CVPR2022论文速递系列:
CVPR 2022 3月3日论文速递(22 篇打包下载)涵盖网络架构设计、姿态估计、三维视觉、动作检测、语义分割等方向
CVPR 2022 3月4日论文速递(29 篇打包下载)涵盖目标检测、全景分割、异常检测、度量学习、对比学习、目标跟踪等方向
全部论文汇总:
以下是今日更新的 CVPR 2022 论文,包括的研究方向有:风格迁移、医学影像、图像去模糊、图像生成/合成、3D目标检测、深度估计、超分辨率、车道线检测、人脸反欺诈、半监督学习和图像重建。打包合集:下载地址
风格迁移
[1] CLIPstyler: Image Style Transfer with a Single Text Condition(具有单一文本条件的图像风格转移)
关键词:Style Transfer, Text-guided synthesis, Language-Image Pre-Training (CLIP)
论文:https://arxiv.org/abs/2112.00374
医学影像
[1] Temporal Context Matters: Enhancing Single Image Prediction with Disease Progression Representations(时间上下文很重要:使用疾病进展表示增强单图像预测)
关键词:Self-supervised Transformer, Temporal modeling of disease progression
论文:https://arxiv.org/abs/2203.01933
图像去模糊
[1] E-CIR: Event-Enhanced Continuous Intensity Recovery(事件增强的连续强度恢复)
论文:https://arxiv.org/abs/2203.01935)
代码:https://github.com/chensong1995/E-CIR
图像生成/图像合成
[4] 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces(基于小批量特征交换的三维形状变化自动编码器潜在解纠缠
论文:https://arxiv.org/abs/2111.12448
代码:https://github.com/simofoti/3DVAE-SwapDisentangled
[3] Interactive Image Synthesis with Panoptic Layout Generation(具有全景布局生成的交互式图像合成)
论文:https://arxiv.org/abs/2203.02104
[2] Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values(极性采样:通过奇异值对预训练生成网络的质量和多样性控制)
论文:https://arxiv.org/abs/2203.01993
demo:http://bit.ly/polarity-demo-colab
[1] Autoregressive Image Generation using Residual Quantization(使用残差量化的自回归图像生成
论文:https://arxiv.org/abs/2203.01941)
代码:https://github.com/kakaobrain/rq-vae-transformer
3D目标检测
[2] A Versatile Multi-View Framework for LiDAR-based 3D Object Detection with Guidance from Panoptic Segmentation(在全景分割的指导下,用于基于 LiDAR 的 3D 对象检测的多功能多视图框架
关键词:3D Object Detection with Point-based Methods, 3D Object Detection with Grid-based Methods, Cluster-free 3D Panoptic Segmentation, CenterPoint 3D Object Detection
论文:https://arxiv.org/abs/2203.02133
[1] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving(自动驾驶中用于单目 3D 目标检测的伪立体)
关键词:Autonomous Driving, Monocular 3D Object Detection
论文:https://arxiv.org/abs/2203.02112
代码:https://github.com/revisitq/Pseudo-Stereo-3D
深度估计
[5] ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance and Domain Generalization in Stereo Matching Networks(立体匹配网络中自动避免捷径和域泛化的信息论方法)
关键词:Learning-based Stereo Matching Networks, Single Domain Generalization, Shortcut Learning
论文:https://arxiv.org/pdf/2201.02263.pdf
ACVNet: Attention Concatenation Volume for Accurate and Efficient Stereo Matching(用于精确和高效立体匹配的注意力连接体积)
关键词:Stereo Matching, cost volume construction, cost aggregation
论文:https://arxiv.org/pdf/2203.02146.pdf
代码:https://github.com/gangweiX/ACVNet
超分辨率
[1] HDNet: High-resolution Dual-domain Learning for Spectral Compressive Imaging(光谱压缩成像的高分辨率双域学习)
关键词:HSI Reconstruction, Self-Attention Mechanism, Image Frequency Spectrum Analysis
论文:https://arxiv.org/pdf/2203.02149.pdf
车道线检测
[1] Rethinking Efficient Lane Detection via Curve Modeling(通过曲线建模重新思考高效车道检测)
关键词:Segmentation-based Lane Detection, Point Detection-based Lane Detection, Curve-based Lane Detection, autonomous driving
论文:https://arxiv.org/abs/2203.02431)
代码:https://github.com/voldemortX/pytorch-auto-drive
人脸反欺诈
[2] Voice-Face Homogeneity Tells Deepfake
论文:https://arxiv.org/abs/2203.02195
代码:https://github.com/xaCheng1996/VFD
半监督学习
[2] Class-Aware Contrastive Semi-Supervised Learning(类感知对比半监督学习
关键词:Semi-Supervised Learning, Self-Supervised Learning, Real-World Unlabeled Data Learning
论文:https://arxiv.org/abs/2203.02261
图像重建
[1] Event-based Video Reconstruction via Potential-assisted Spiking Neural Network(通过电位辅助尖峰神经网络进行基于事件的视频重建
论文:https://arxiv.org/abs/2201.10943
暂无分类
[2] Do Explanations Explain? Model Knows Best(解释解释吗? 模型最清楚
论文:https://arxiv.org/abs/2203.02269