CVPR 2022 3月7日论文速递(17 篇打包下载)涵盖 3D 目标检测、医学影像、图像去模糊、车道线检测等方向

这篇博客汇总了CVPR2022会议的最新论文,涵盖了风格迁移、医学影像分析、图像去模糊、图像生成、3D目标检测、深度估计等多个领域的技术创新。亮点包括使用文本条件的图像风格转移、疾病进展的时间上下文建模、以及自动驾驶中的单目3D目标检测等。此外,还介绍了用于立体匹配的自动捷径避免和域泛化的信息论方法以及高分辨率图像超分辨率技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2022论文速递系列

CVPR 2022 3月3日论文速递(22 篇打包下载)涵盖网络架构设计、姿态估计、三维视觉、动作检测、语义分割等方向
CVPR 2022 3月4日论文速递(29 篇打包下载)涵盖目标检测、全景分割、异常检测、度量学习、对比学习、目标跟踪等方向

全部论文汇总

CVPR 2022 最全整理:论文分方向汇总 / 代码 / 解读 / 直播 / 项目(更新中)【计算机视觉】

以下是今日更新的 CVPR 2022 论文,包括的研究方向有:风格迁移、医学影像、图像去模糊、图像生成/合成、3D目标检测、深度估计、超分辨率、车道线检测、人脸反欺诈、半监督学习和图像重建。打包合集:下载地址



风格迁移

[1] CLIPstyler: Image Style Transfer with a Single Text Condition(具有单一文本条件的图像风格转移)

关键词:Style Transfer, Text-guided synthesis, Language-Image Pre-Training (CLIP)

论文:https://arxiv.org/abs/2112.00374

医学影像

[1] Temporal Context Matters: Enhancing Single Image Prediction with Disease Progression Representations(时间上下文很重要:使用疾病进展表示增强单图像预测)

关键词:Self-supervised Transformer, Temporal modeling of disease progression

论文:https://arxiv.org/abs/2203.01933

图像去模糊

[1] E-CIR: Event-Enhanced Continuous Intensity Recovery(事件增强的连续强度恢复)

论文:https://arxiv.org/abs/2203.01935)

代码:https://github.com/chensong1995/E-CIR

图像生成/图像合成

[4] 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces(基于小批量特征交换的三维形状变化自动编码器潜在解纠缠

论文:https://arxiv.org/abs/2111.12448

代码:https://github.com/simofoti/3DVAE-SwapDisentangled

[3] Interactive Image Synthesis with Panoptic Layout Generation(具有全景布局生成的交互式图像合成)

论文:https://arxiv.org/abs/2203.02104

[2] Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values(极性采样:通过奇异值对预训练生成网络的质量和多样性控制)

论文:https://arxiv.org/abs/2203.01993

demo:http://bit.ly/polarity-demo-colab

[1] Autoregressive Image Generation using Residual Quantization(使用残差量化的自回归图像生成

论文:https://arxiv.org/abs/2203.01941)

代码:https://github.com/kakaobrain/rq-vae-transformer

3D目标检测

[2] A Versatile Multi-View Framework for LiDAR-based 3D Object Detection with Guidance from Panoptic Segmentation(在全景分割的指导下,用于基于 LiDAR 的 3D 对象检测的多功能多视图框架

关键词:3D Object Detection with Point-based Methods, 3D Object Detection with Grid-based Methods, Cluster-free 3D Panoptic Segmentation, CenterPoint 3D Object Detection

论文:https://arxiv.org/abs/2203.02133

[1] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving(自动驾驶中用于单目 3D 目标检测的伪立体)

关键词:Autonomous Driving, Monocular 3D Object Detection

论文:https://arxiv.org/abs/2203.02112

代码:https://github.com/revisitq/Pseudo-Stereo-3D

深度估计

[5] ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance and Domain Generalization in Stereo Matching Networks(立体匹配网络中自动避免捷径和域泛化的信息论方法)

关键词:Learning-based Stereo Matching Networks, Single Domain Generalization, Shortcut Learning

论文:https://arxiv.org/pdf/2201.02263.pdf

ACVNet: Attention Concatenation Volume for Accurate and Efficient Stereo Matching(用于精确和高效立体匹配的注意力连接体积)

关键词:Stereo Matching, cost volume construction, cost aggregation

论文:https://arxiv.org/pdf/2203.02146.pdf

代码:https://github.com/gangweiX/ACVNet

超分辨率

[1] HDNet: High-resolution Dual-domain Learning for Spectral Compressive Imaging(光谱压缩成像的高分辨率双域学习)

关键词:HSI Reconstruction, Self-Attention Mechanism, Image Frequency Spectrum Analysis

论文:https://arxiv.org/pdf/2203.02149.pdf

车道线检测

[1] Rethinking Efficient Lane Detection via Curve Modeling(通过曲线建模重新思考高效车道检测)

关键词:Segmentation-based Lane Detection, Point Detection-based Lane Detection, Curve-based Lane Detection, autonomous driving

论文:https://arxiv.org/abs/2203.02431)

代码:https://github.com/voldemortX/pytorch-auto-drive

人脸反欺诈

[2] Voice-Face Homogeneity Tells Deepfake

论文:https://arxiv.org/abs/2203.02195

代码:https://github.com/xaCheng1996/VFD

半监督学习

[2] Class-Aware Contrastive Semi-Supervised Learning(类感知对比半监督学习

关键词:Semi-Supervised Learning, Self-Supervised Learning, Real-World Unlabeled Data Learning

论文:https://arxiv.org/abs/2203.02261

图像重建

[1] Event-based Video Reconstruction via Potential-assisted Spiking Neural Network(通过电位辅助尖峰神经网络进行基于事件的视频重建

论文:https://arxiv.org/abs/2201.10943

暂无分类

[2] Do Explanations Explain? Model Knows Best(解释解释吗? 模型最清楚

论文:https://arxiv.org/abs/2203.02269

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值