采用多种深度学习、机器学习算法实现目标意图识别系统——含完整项目源码

基于Python多种深度学习、机器学习算法的目标意图识别系统

引言

目标意图识别是自然语言处理中的一个重要任务,广泛应用于智能客服、语音助手等领域。本文将介绍如何使用Python实现多种深度学习和机器学习算法来构建目标意图识别系统。我们将使用两个英文数据集ATIS和SNIPS,并分别使用SVM、LR、Stack-Propagation、Bi-model with decoder、Bi-LSTM、JointBERT和ERNIE等算法进行训练和测试。

🚀完整项目源码下载链接👉https://download.csdn.net/download/DeepLearning_/89938355

数据集介绍

1. ATIS 数据集

  • 描述:航空旅行信息系统的英文数据集。
  • 训练数据:4978条
  • 测试数据:888条
  • 类别:22个

2. SNIPS 数据集

  • 描述:智能个人助手的英文数据集。
  • 训练数据:13784条
  • 测试数据:700条
  • 类别:7个

算法介绍

1. SVM(支持向量机)

支持向量机是一种监督学习模型,用于分类和回归分析。它通过找到一个超平面来最大化不同类别之间的间隔。

2. LR(逻辑回归)

逻辑回归是一种广义线性模型,用于二分类或多分类问题。它通过sigmoid函数将线性组合的结果映射到0和1之间。

3. Stack-Propagation(堆叠传播)

堆叠传播是一种深度学习方法,通过多层神经网络逐步学习数据的高级特征。

4. Bi-model with decoder(双向模型加解码器)

双向模型结合了前向和后向的信息,解码器则用于生成最终的输出。

5. Bi-LSTM(双向长短期记忆网络)

双向LSTM通过前向和后向两个方向的LSTM单元来捕捉序列数据的上下文信息。

6. JointBERT

JointBERT是一种基于BERT的联合意图识别和槽位填充模型,通过预训练的BERT模型进行迁移学习。

7. ERNIE

ERNIE是百度提出的一种增强版的BERT模型,通过引入知识图谱等外部知识来提升模型性能。

环境搭建

确保安装了以下软件和库:

  • Python 3.x
  • PyTorch
  • Transformers
  • Scikit-learn
  • Pandas
  • Numpy

安装所需的库:

pip install torch transformers scikit-learn pandas numpy

算法实现

1. SVM 实现(仅供参考)

# train.py
import argparse
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report

def load_data(dataset):
    if dataset == 'atis':
        train_data = pd.read_csv('data/atis_train.csv')
        test_data = pd.read_csv('data/atis_test.csv')
    elif dataset == 'snips':
        train_data = pd.read_csv('data/snips_train.csv')
        test_data = pd.read_csv('data/snips_test.csv')
    return train_data, test_data

def main(args):
    train_data, test_data = load_data(args.dataset)
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(train_data['text'])
    X_test = vectorizer.transform(test_data['text'])
    
    y_train = train_data['intent']
    y_test = test_data['intent']
    
    model = SVC()
    model.fit(X_train, y_train)
    
    y_pred = model.predict(X_test)
    print(classification_report(y_test, y_pred))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='atis', help='Dataset to use (atis or snips)')
    args = parser.parse_args()
    main(args)

2. LR 实现(仅供参考)

# train.py
import argparse
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

def load_data(dataset):
    if dataset == 'atis':
        train_data = pd.read_csv('data/atis_train.csv')
        test_data = pd.read_csv('data/atis_test.csv')
    elif dataset == 'snips':
        train_data = pd.read_csv('data/snips_train.csv')
        test_data = pd.read_csv('data/snips_test.csv')
    return train_data, test_data

def main(args):
    train_data, test_data = load_data(args.dataset)
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(train_data['text'])
    X_test = vectorizer.transform(test_data['text'])
    
    y_train = train_data['intent']
    y_test = test_data['intent']
    
    model = LogisticRegression()
    model.fit(X_train, y_train)
    
    y_pred = model.predict(X_test)
    print(classification_report(y_test, y_pred))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='atis', help='Dataset to use (atis or snips)')
    args = parser.parse_args()
    main(args)

3. Stack-Propagation 实现(仅供参考)

# train.py
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report

class StackPropagation(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(StackPropagation, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, output_dim)
        self.relu = nn.ReLU()

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.relu(out)
        out = self.fc3(out)
        return out

def load_data(dataset):
    if dataset == 'atis':
        train_data = pd.read_csv('data/atis_train.csv')
        test_data = pd.read_csv('data/atis_test.csv')
    elif dataset == 'snips':
        train_data = pd.read_csv('data/snips_train.csv')
        test_data = pd.read_csv('data/snips_test.csv')
    return train_data, test_data

def main(args):
    train_data, test_data = load_data(args.dataset)
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(train_data['text']).toarray()
    X_test = vectorizer.transform(test_data['text']).toarray()
    
    y_train = train_data['intent'].values
    y_test = test_data['intent'].values
    
    input_dim = X_train.shape[1]
    hidden_dim = 128
    output_dim = len(set(y_train))
    
    model = StackPropagation(input_dim, hidden_dim, output_dim)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    X_train = torch.tensor(X_train, dtype=torch.float32)
    y_train = torch.tensor(y_train, dtype=torch.long)
    X_test = torch.tensor(X_test, dtype=torch.float32)
    y_test = torch.tensor(y_test, dtype=torch.long)
    
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(X_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()
    
    with torch.no_grad():
        outputs = model(X_test)
        _, predicted = torch.max(outputs, 1)
        print(classification_report(y_test.numpy(), predicted.numpy()))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='atis', help='Dataset to use (atis or snips)')
    args = parser.parse_args()
    main(args)

4. Bi-model with decoder 实现(仅供参考)

# train.py
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report

class BiModelWithDecoder(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(BiModelWithDecoder, self).__init__()
        self.encoder = nn.LSTM(input_dim, hidden_dim, bidirectional=True, batch_first=True)
        self.decoder = nn.LSTM(hidden_dim * 2, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)
        self.relu = nn.ReLU()

    def forward(self, x):
        encoded, _ = self.encoder(x)
        decoded, _ = self.decoder(encoded)
        out = self.fc(decoded[:, -1, :])
        return out

def load_data(dataset):
    if dataset == 'atis':
        train_data = pd.read_csv('data/atis_train.csv')
        test_data = pd.read_csv('data/atis_test.csv')
    elif dataset == 'snips':
        train_data = pd.read_csv('data/snips_train.csv')
        test_data = pd.read_csv('data/snips_test.csv')
    return train_data, test_data

def main(args):
    train_data, test_data = load_data(args.dataset)
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(train_data['text']).toarray()
    X_test = vectorizer.transform(test_data['text']).toarray()
    
    y_train = train_data['intent'].values
    y_test = test_data['intent'].values
    
    input_dim = X_train.shape[1]
    hidden_dim = 128
    output_dim = len(set(y_train))
    
    model = BiModelWithDecoder(input_dim, hidden_dim, output_dim)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    X_train = torch.tensor(X_train, dtype=torch.float32).unsqueeze(1)
    y_train = torch.tensor(y_train, dtype=torch.long)
    X_test = torch.tensor(X_test, dtype=torch.float32).unsqueeze(1)
    y_test = torch.tensor(y_test, dtype=torch.long)
    
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(X_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()
    
    with torch.no_grad():
        outputs = model(X_test)
        _, predicted = torch.max(outputs, 1)
        print(classification_report(y_test.numpy(), predicted.numpy()))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='atis', help='Dataset to use (atis or snips)')
    args = parser.parse_args()
    main(args)

5. Bi-LSTM 实现(仅供参考)

# train.py
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report

class BiLSTM(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(BiLSTM, self).__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, bidirectional=True, batch_first=True)
        self.fc = nn.Linear(hidden_dim * 2, output_dim)
        self.relu = nn.ReLU()

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        out = self.fc(lstm_out[:, -1, :])
        return out

def load_data(dataset):
    if dataset == 'atis':
        train_data = pd.read_csv('data/atis_train.csv')
        test_data = pd.read_csv('data/atis_test.csv')
    elif dataset == 'snips':
        train_data = pd.read_csv('data/snips_train.csv')
        test_data = pd.read_csv('data/snips_test.csv')
    return train_data, test_data

def main(args):
    train_data, test_data = load_data(args.dataset)
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(train_data['text']).toarray()
    X_test = vectorizer.transform(test_data['text']).toarray()
    
    y_train = train_data['intent'].values
    y_test = test_data['intent'].values
    
    input_dim = X_train.shape[1]
    hidden_dim = 128
    output_dim = len(set(y_train))
    
    model = BiLSTM(input_dim, hidden_dim, output_dim)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    X_train = torch.tensor(X_train, dtype=torch.float32).unsqueeze(1)
    y_train = torch.tensor(y_train, dtype=torch.long)
    X_test = torch.tensor(X_test, dtype=torch.float32).unsqueeze(1)
    y_test = torch.tensor(y_test, dtype=torch.long)
    
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(X_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()
    
    with torch.no_grad():
        outputs = model(X_test)
        _, predicted = torch.max(outputs, 1)
        print(classification_report(y_test.numpy(), predicted.numpy()))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='atis', help='Dataset to use (atis or snips)')
    args = parser.parse_args()
    main(args)

6. JointBERT 实现(仅供参考)

# main.py
import argparse
import pandas as pd
from transformers import BertTokenizer, BertForTokenClassification
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.metrics import classification_report

class IntentDataset(Dataset):
    def __init__(self, data, tokenizer, max_len):
        self.data = data
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data.iloc[idx]['text']
        intent = self.data.iloc[idx]['intent']
        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            pad_to_max_length=True,
            return_token_type_ids=True
        )
        ids = inputs['input_ids']
        mask = inputs['attention_mask']
        return {
            'ids': torch.tensor(ids, dtype=torch.long),
            'mask': torch.tensor(mask, dtype=torch.long),
            'targets': torch.tensor(intent, dtype=torch.long)
        }

def train(model, dataloader, optimizer, device):
    model.train()
    for data in dataloader:
        ids = data['ids'].to(device)
        mask = data['mask'].to(device)
        targets = data['targets'].to(device)
        outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
        loss = outputs[0]
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

def evaluate(model, dataloader, device):
    model.eval()
    predictions = []
    true_labels = []
    with torch.no_grad():
        for data in dataloader:
            ids = data['ids'].to(device)
            mask = data['mask'].to(device)
            targets = data['targets'].to(device)
            outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
            _, preds = torch.max(outputs[1], dim=1)
            predictions.extend(preds.cpu().numpy())
            true_labels.extend(targets.cpu().numpy())
    return predictions, true_labels

def main(args):
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    model = BertForTokenClassification.from_pretrained('bert-base-uncased', num_labels=len(set(train_data['intent'])))
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.to(device)
    
    train_data = pd.read_csv(f'data/{args.task}_train.csv')
    test_data = pd.read_csv(f'data/{args.task}_test.csv')
    
    train_dataset = IntentDataset(train_data, tokenizer, max_len=128)
    test_dataset = IntentDataset(test_data, tokenizer, max_len=128)
    
    train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)
    
    optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-5)
    
    for epoch in range(10):
        train(model, train_loader, optimizer, device)
        predictions, true_labels = evaluate(model, test_loader, device)
        print(classification_report(true_labels, predictions))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--task', type=str, default='atis', help='Task to use (atis or snips)')
    parser.add_argument('--model_dir', type=str, default='models', help='Directory to save models')
    args = parser.parse_args()
    main(args)

7. ERNIE 实现(仅供参考)

# train.py
import argparse
import pandas as pd
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.metrics import classification_report

class IntentDataset(Dataset):
    def __init__(self, data, tokenizer, max_len):
        self.data = data
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data.iloc[idx]['text']
        intent = self.data.iloc[idx]['intent']
        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            pad_to_max_length=True,
            return_token_type_ids=True
        )
        ids = inputs['input_ids']
        mask = inputs['attention_mask']
        return {
            'ids': torch.tensor(ids, dtype=torch.long),
            'mask': torch.tensor(mask, dtype=torch.long),
            'targets': torch.tensor(intent, dtype=torch.long)
        }

def train(model, dataloader, optimizer, device):
    model.train()
    for data in dataloader:
        ids = data['ids'].to(device)
        mask = data['mask'].to(device)
        targets = data['targets'].to(device)
        outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
        loss = outputs[0]
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

def evaluate(model, dataloader, device):
    model.eval()
    predictions = []
    true_labels = []
    with torch.no_grad():
        for data in dataloader:
            ids = data['ids'].to(device)
            mask = data['mask'].to(device)
            targets = data['targets'].to(device)
            outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
            _, preds = torch.max(outputs[1], dim=1)
            predictions.extend(preds.cpu().numpy())
            true_labels.extend(targets.cpu().numpy())
    return predictions, true_labels

def main(args):
    tokenizer = BertTokenizer.from_pretrained('ernie-base')
    model = BertForSequenceClassification.from_pretrained('ernie-base', num_labels=len(set(train_data['intent'])))
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.to(device)
    
    train_data = pd.read_csv(f'data/{args.task}_train.csv')
    test_data = pd.read_csv(f'data/{args.task}_test.csv')
    
    train_dataset = IntentDataset(train_data, tokenizer, max_len=128)
    test_dataset = IntentDataset(test_data, tokenizer, max_len=128)
    
    train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)
    
    optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-5)
    
    for epoch in range(10):
        train(model, train_loader, optimizer, device)
        predictions, true_labels = evaluate(model, test_loader, device)
        print(classification_report(true_labels, predictions))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--task', type=str, default='atis', help='Task to use (atis or snips)')
    parser.add_argument('--model_dir', type=str, default='models', help='Directory to save models')
    args = parser.parse_args()
    main(args)

结果与讨论

通过上述步骤,我们成功实现了多种深度学习和机器学习算法的目标意图识别系统。实验结果显示,深度学习模型(如Bi-LSTM、JointBERT和ERNIE)在复杂任务中表现出更好的性能,而传统机器学习模型(如SVM和LR)在简单任务中也有不错的表现。每种算法都有其适用场景和优缺点,选择合适的算法取决于具体的应用需求和数据特性。

🚀完整项目源码下载链接👉https://download.csdn.net/download/DeepLearning_/89938355

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

onnx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值