HashMap的抽丝剥茧

这篇博客详细注释了HashMap的重要方法,省略了一些非关键部分以保持清晰。内容包括HashMap的链表实现,但未涉及红黑树的中间部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:
对于HashMap的一些重点方法进行了注释。还有大多数没有进行注释的部分就尽量不弄进来了,以免影响观看。

package java.util;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

/**
 * 插入、获取的时间复杂度基本是 O(1)(前提是有适当的哈希函数,让元素分布在均匀的位置)
 * 还有关于红黑树的操作后续再看并总结吧
 * 
 * 再看完构造方法和put方法后可以发现
 * 事实上,new HashMap();完成后,如果没有put操作,是不会分配存储空间的。
 * 
 * 添加操作:
 * 1.当桶数组 table 为空时,通过扩容的方式初始化 table
 * 2.查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值
 * 3.如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树
 * 4.判断键值对数量是否大于阈值,大于的话则进行扩容操作
 * 
 * 还说下注意点:
 * 1.HashMap有个MIN_TREEIFY_CAPACITY代表:桶中结构转化为红黑树对应的table的最小大小。
 * 当需要将解决 hash 冲突的链表转变为红黑树时,需要判断下此时数组容量,若是由于数组容量太小(小于 MIN_TREEIFY_CAPACITY )
 * 导致的 hash 冲突太多,则不进行链表转变为红黑树操作,转为利用 resize() 函数对 hashMap 扩容。
 * 所以并不是桶子上有8位元素的时候它就能变成红黑树,它得同时满足我们的散列表容量大于64才行的
 * 
 * 2.请问HashMap在什么时候扩容?
 * 一定是当size达到总容量的0.75时会扩容吗?这个不一定,得看jdk的版本,1.8以上put操作时确实对是否扩容只有loadFactor这个因素
 * 在1.7的源码中的put操作时扩容的条件为“(size >= threshold) && (null != table[bucketIndex])”,也就是说还需要同时满足后面条件,
 * 那么bucketIndex又是什么呢?直译为“桶的下标”,即下一个存放Entry的桶的位置。简而言之,
 * 仅当size >= threshold且发生Hash值%(length-1)冲突(或修改已存在的值或)时,才会进行扩容。
 * 
 * 3.还有关于1.8和1.7的一些改动:
 * 数据结构:
 * JDK1.7使用数组+链表的数据结构,而1.8使用数组+链表+红黑树。
 * 如果插入key的hashcode相同,使用链表方式解决冲突,当链表长度达到8个(默认设置的阈值)时,
 * 调用treeifyBin函数,将链表转换为红黑树。红黑树的时间复杂度为O(log n),即put/get最坏时间复杂度为O(log n)。而使用链表的话,则是O(n)
 * 数据存储机制:
 * 发生hash冲突时,JDK1.7采用链地址法+头插法,而1.8采用链地址法+尾插法+红黑树。
 * 头插入法插入效率较高,但容易出现逆序且环形链表死循环问题,尾插法可避免此问题。
 * 
 * 4.为什么要用红黑树,而不用平衡二叉树?
 * 插入效率比平衡二叉树高,查询效率比普通二叉树高。所以选择性能相对折中的红黑树
 * 
 * 5. JDK1.7是基于数组+单链表实现(为什么不用双链表)
 * 首先,用链表是为了解决hash冲突。单链表能实现为什么要用双链表呢?(双链表需要更大的存储空间)
 * 
 * 6.再谈下和Hashtable的区别及多线程情况下使用什么:
 * 从存储结构和实现来讲基本上都是相同的。它和HashMap的最大的不同是它是线程安全的,另外它不允许key和value为null。
 * Hashtable是个过时的集合类,不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换
 * 还有一种就是 Map m = Collections.synchronizedMap(new HashMap(...));
 * 
 * 7.重写对象的Equals方法时,要重写hashCode方法,为什么?跟HashMap有什么关系?
equals与hashcode间的关系:

    如果两个对象相同(即用equals比较返回true),那么它们的hashCode值一定要相同;
    如果两个对象的hashCode相同,它们并不一定相同(即用equals比较返回false)

因为在 HashMap 的链表结构中遍历判断的时候,特定情况下重写的 equals 方法比较对象是否相等的业务逻辑比较复杂,循环下来更是影响查找效率。所以这里把 hashcode 的判断放在前面,只要 hashcode 不相等就玩儿完,不用再去调用复杂的 equals 了。很多程度地提升 HashMap 的使用效率。

所以重写 hashcode 方法是为了让我们能够正常使用 HashMap 等集合类,因为 HashMap 判断对象是否相等既要比较 hashcode 又要使用 equals 比较。而这样的实现是为了提高 HashMap 的效率。
 * 
 * 8. 既然红黑树那么好,为啥hashmap不直接采用红黑树,而是当大于8个的时候才转换红黑树?
 * 因为红黑树需要进行左旋,右旋操作, 而单链表不需要。
 * 以下都是单链表与红黑树结构对比。
 * 如果元素小于8个,查询成本高,新增成本低。
 * 如果元素大于8个,查询成本低,新增成本高。
 * 至于为什么选数字8,是大佬折中衡量的结果-.-,就像loadFactor默认值0.75一样。
 * 
 * 9.其他
 * 扩容后是原先容量的两倍
 * 
 * 底层数组的长度要求2的次方(即使不是2的次方也会经过tableSizeFor转为2的次方):
 * 首先,capacity 为 2的整数次幂的话,计算桶的位置 h&(length-1) 就相当于对 length 取模,提升了计算效率;
 * 其次,capacity 为 2 的整数次幂的话,为偶数,这样 capacity-1 为奇数,奇数的最后一位是 1,
 * 这样便保证了 h&(capacity-1) 的最后一位可能为 0,也可能为 1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性;
 * 而如果 capacity 为奇数的话,很明显 capacity-1 为偶数,它的最后一位是 0,这样 h&(capacity-1) 的最后一位肯定为 0,
 * 即只能为偶数,这样任何 hash 值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间。
 * 
 * 怎样通过key获得数组中的索引呢?i=(length - 1) & hash 类似于取余,但是效率高一些
 * 
 * 
 * 
 * 
 * 
 * 
 * Hash table based implementation of the <tt>Map</tt> interface.  This
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.(这里说的允许key和value为空)   (The <tt>HashMap</tt>
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 * 上面一段主要讲了允许key和value为null,且说了几乎等同于Hashtable除了不同步和允许为null外
 * 然后还说了此类不保证映射的顺序,特别是它不保证该顺序恒久不变。(个人理解是rehash时会导致顺序变化) 
 *
 * <p>This implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 * 此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能。
 * 迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。
 * 所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。 
 *
 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 *HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。容量 是哈希表中桶的数量,
 *初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。
 *当哈希表中的条目数超出了加载因子与当前容量的乘积时,
 *则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。 
 *
 * <p>As a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs.  Higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the <tt>HashMap</tt> class, including
 * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations.  If the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 * 默认的装载因子为0.75,过高的装载因子虽然会降低空间消耗,但是会增加查找的时间消耗
 * 在设置初始化参数时,应该考虑好装载因子和实体数目,以便最大限度地减少 rehash 操作次数。
 * 如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。 
 *
 * <p>If many mappings are to be stored in a <tt>HashMap</tt>
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table.  Note that using
 * many keys with the same {@code hashCode()} is a sure way to slow
 * down performance of any hash table. To ameliorate impact, when keys
 * are {@link Comparable}, this class may use comparison order among
 * keys to help break ties.
 * 如果许多映射要存储在HashMap中,那么创建一个足够大的容量将让映射被更有效地存储,而不是让它执行再hash。
 * 
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 * 这里强调的是不同步
 *
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 *   这里强调的是怎样使其成为一个同步的容器
 *
 *
 * 下面的基本在介绍迭代器和fail-fast
 * <p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 *
 * @author  Doug Lea
 * @author  Josh Bloch
 * @author  Arthur van Hoff
 * @author  Neal Gafter
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Map
 * @see     TreeMap
 * @see     Hashtable
 * @since   1.2
 */
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;


    /**
     * The default initial capacity - MUST be a power of two.、
     * 必须是 2 的整数次方
     * 默认初始化容量,<<代表向左四位,所以1变为16
     * 
     * 至于为什么是2的次方,后总结https://blog.csdn.net/oqqYeYi/article/details/39831029
     * 或者https://www.ibm.com/developerworks/cn/java/j-lo-hash/?open&cm_mmc=6505-_-n-_-vrm_newsletter-_-10104_142587&cmibm_em=dm:0:10631101
     * 
     * HashMap 底层数组的长度总是 2 的 n 次方,这一点可参看后面关于 HashMap 构造器的介绍。
     * 当 length 总是 2 的倍数时,h & (length-1)将是一个非常巧妙的设计:假设 h=5,length=16, 那么 h & length - 1 将得到 5;
     * 如果 h=6,length=16, 那么 h & length - 1 将得到 6 ……如果 h=15,length=16, 那么 h & length - 1 将得到 15;
     * 但是当 h=16 时 , length=16 时,那么 h & length - 1 将得到 0 了;当 h=17 时 , length=16 时,
     * 那么 h & length - 1 将得到 1 了……这样保证计算得到的索引值总是位于 table 数组的索引之内。
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     * 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
     * 
     * 这里相当于2的30次方,不用Math的方法进行运算是因为位运算效率高点
     * 还有明明int是4个字节即32位,不应该是2的31次方吗?
     * 原因在于第一位是用作符号位的。用来表示正负之分(0为正,1为负)
     * 
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     * 默认装载因子
     * 结合时间和空间效率考虑得到的一个折中方案
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin(容器) count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     * 
     * 这个常量名的意思根据英文名看出是链表转为红黑树的门槛
     * 当同一个桶中超过8个元素即进行转换
     * 
     * 链表转成树的阈值,当桶中链表长度大于8时转成树 
     * threshold = capacity * loadFactor
     * 
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     * 
     * 这个和上一个常量意思相反,即树转为list的界限。
     * 进行resize操作时,当桶中数量小于6转为链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     * 
     * 最小树化容量(桶的数目即数组的长度)
     * 
     * 
     *  桶中结构转化为红黑树对应的table的最小大小
     *  当需要将解决 hash 冲突的链表转变为红黑树时,
     *  需要判断下此时数组容量,
     *  若是由于数组容量太小(小于 MIN_TREEIFY_CAPACITY )
     *  导致的 hash 冲突太多,则不进行链表转变为红黑树操作,
     *  转为利用 resize() 函数对 hashMap 扩容
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
    	// hash值代表位置
        final int hash;
        final K key;
        V value;
        // 下一个节点的指针
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
        	// 这个是按位异或
        	// Objects中的hashCode方法会进行null判断,为null时hashCode直接为0 不为null才去执行Object中的本地hashCode方法
        	// 由 Object 类定义的 hashCode 方法确实会针对不同的对象返回不同的整数。
        	// (这一般是通过将该对象的内部地址转换成一个整数来实现的,但是 Java 编程语言不需要这种实现技巧。)
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        /**
         * 设置成新值返回旧值
         */
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
        	// 先判断引用是否一致。不一致再看key和value的hashCode值
            if (o == this)
                return true;
            // 先判断类型
            if (o instanceof Map.Entry) {
            	// 这里不知道为什么还要使用一个临时变量
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                
                // 必须key和value的hashCode值同时相同才返回true
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

   
    static final int hash(Object key) {
        int h;
        // h >>> 16是用来取出h的高16 由于int只有32位,无符号向右移16位就代表取最先的16位即高16位
        // 如0000 0100 1011 0011  1101 1111 1110 0001 -> 0000 0000 0000 0000  0000 0100 1011 0011
        // 那么为什么(h = key.hashCode())要与(h >>> 16)进行亦或呢?
        // 将键的hashcode的高16位异或低16位(高位运算),这样即使数组table的length比较小的时候,也能保证高低Bit都参与到Hash的计算中,同时不会有太大的开销;
        // 另一个解释(为什么要先高16位异或低16位再取余运算):
        // 当我们的length为16(即长度比较小)的时候,哈希码(字符串“abcabcabcabcabc”的key对应的哈希码)对(16-1)&操作,对于多个key生成的hashCode,只要哈希码的后4位为0,
        // 不论不论高位怎么变化,最终的结果均为0。也就是说,如果只取后四位(低位)的话,这个时候产生"碰撞"的几率就非常大(当然&运算中产生碰撞的原因很多,
        // 这里只是举个例子)。为了解决低位与操作碰撞的问题,于是便有了第二步中高16位异或低16位的“扰动函数”。
        // 右移16位,自己的高半区和低半区异或,就是为了混合原始哈希码的高位和低位,以此来加大低位随机性。减少了碰撞冲突的可能性!
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    /**
     * Returns a power of two size for the given target capacity.
     * 根据指定的容量计算出合适的阈值
     * 经过若干次无符号右移、求异运算,得出最接近指定参数 cap 的 2 的 N 次方容量。假如你传入的是 5,返回的初始容量为 8 。
     * 刚刚自己测试的结果是返回大于等于当前值的2的N次方
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     * 
     * 哈希表中的链表数组,代表桶的集合,每一个桶又是一个链表
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     * 缓存的 键值对集合(另外两个视图:keySet 和 values 是在 AbstractMap 中声明的)
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     * 键值对的数量(不是数组中包含得键值对,而是指得所有得)
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * 
     * 当前 HashMap 修改的次数,这个变量用来保证 fail-fast 机制
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * 阈值 下次需要扩容时的值,等于 容量*加载因子
     * threshold = capacity * load factor
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     * 加载因子,默认得加载因子也是在构造函数里要赋值给这个得
     * @serial
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     * 
     * 构建一个带有指定初始化容量和加载因子的空的HashMap
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
    	// 初始化容量小于0会抛出异常
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        
        // 如果传的容量值太过高大于MAXIMUM_CAPACITY,则令初始化参数为最大值
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        // 如果加载因子小于等于0或是加载因子为nan(Not-a-Number)这种就会抛出异常
        // JDK中float和double有一个方法isNan,该方法用于描述非法的float,经过多次运算float值可能会出现非法情况,如除数为0.0
        // 在Float中NaN实际上是引用类型,而不是值类型,每一个NaN都是不同的对象(即nan!=nan)。
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        // 如果没有异常则赋值
        this.loadFactor = loadFactor;
        // 根据初始化容量设置一个合适的阈值
        this.threshold = tableSizeFor(initialCapacity);
        
        // 不过这里好像没有成员变量Capacity还有疑问的是threshold不应该是initialCapacity*loadFactor吗
        // 在1.7的源码是有一个局部变量capacity的,也是用来计算threshold并初始化table
        /*
         *  // 计算出大于 initialCapacity 的最小的 2 的 n 次方值。
    int capacity = 1; 
    // 这个就类似于jdk1.8的tableSizeFor方法
    while (capacity < initialCapacity) 
        capacity <<= 1; 
    this.loadFactor = loadFactor; 
    // 设置容量极限等于容量 * 负载因子
    threshold = (int)(capacity * loadFactor); 
    // 初始化 table 数组
    table = new Entry[capacity];           
    init(); 
         */
        
        // 然后关于1.8中为啥是将2的整数幂的数赋给threshold?
        // threshold这个成员变量是阈值,决定了是否要将散列表再散列。它的值应该是:capacity * load factor才对的。
        // 原因:其实这里仅仅是一个初始化,当创建哈希表的时候,它会重新赋值的即第一次的resize()中
        
        
        
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     * 
     * 构建一个带有指定初始化容量和默认加载因子0.75的空的HashMap
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     * 构建一个带有指定默认容量16和默认加载因子0.75的空的HashMap
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     * 
     * 创建一个内容为参数 m 的内容的哈希表
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor
     *
     * @param m the map
     * @param evict false when initially constructing this map, else
     * true (relayed to method afterNodeInsertion).
     * evict当初始化map时为false,否则为true
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
        	//数组还是空,初始化参数
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            //数组不为空,超过阈值就扩容
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                //先经过 hash() 计算位置,然后复制指定 map 的内容
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        // 根据hash(key)计算出位置,再调用getNode找到节点
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     * 
     * 实现map的get及其相关方法
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
        	// first是桶中的元素,如果只有这一个节点(不是链表)就可以直接返回了
        	// 或者是链表但是首节点与传来的key一致(同一条链表上的节点主要是key的hash值相同)
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) { // 这里就需要在链表或红黑树了就麻烦点
                if (first instanceof TreeNode) // 红黑树
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do { // 链表 遍历找到equal相等的,先使用hash判断排除大部分相比于直接使用eauals判断提高一些效率
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the
     * specified key.
     * 相当于使用get方法,看是否取得到
     * @param   key   The key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the specified
     * key.
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     * 实现map的put和相关的方法
     * 
     * 将值存入map的实际方法
     *
     * @param hash hash for key // 存储的位置
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value // 如果为true,则不改变存在的值
     * @param evict if false, the table is in creation mode. // 这个之前说过,当为true代表是在用另一个map进行初始化(最后一种构造方法)
     * 除了这种情况,其他时候evict都为false
     * @return previous value, or null if none 如果之前存在返回之前的值,不存在则返回null
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        
        // 当散列表为空时,调用resize初始化散列表
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;

        // 在jdk1.7中有indexFor(int h, int length)方法。jdk1.8里没有,但原理没变。]
        // 1.8中用tab[(n - 1) & hash]代替但原理一样。
        
        // “模”运算的消耗还是比较大的所以使用h & (length-1) 其实就是取余
        // 这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的 n 次方,这是HashMap在速度上的优化
        // 当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。
        // 取模(取余)运算转化成位运算公式:a%(2^n) 等价于 a&(2^n-1),而&操作比%操作具有更高的效率。
        
        // 如果要插入的位置没有元素,新建个节点并放进去即没有发生碰撞时,直接添加元素到散列表中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else { // 发生了碰撞
            Node<K,V> e; K k;
            
            // 如果要插入的元素,桶的key和hash都相等(即与首节点匹配),记录下来
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果是红黑树结构,则调用树的插入方法
            else if (p instanceof TreeNode)
            	// 放入树中
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else { 
            	// 链表结构,找到了key映射的节点,就记录这个节点,退出循环
            	// 如果没有找到,在链表尾部插入节点。插入后如果发现临界值大于TREEIFY_THRESHOLD
            	// ,转为红黑树
            	
            	// 对链表进行遍历,并统计链表长度
                for (int binCount = 0; ; ++binCount) {
                	
                	// 到达链表底部
                    if ((e = p.next) == null) {
                    	// 在尾部插入新节点
                        p.next = newNode(hash, key, value, null);
                        // 如果节点数量达到阈值,则转化为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 判断链表中节点的key值与插入的元素的key是否相等
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 判断要插入的键值对是否存在HashMap中
            // 新值覆盖旧值,返回旧值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // onlyIfAbsent表示是否仅在lodValue为null情况下更新键值对的值
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     * 初始化时需要调用,当散列表元素大于阈值threshold时也要调用
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 这里就代表不是第一次扩容
        if (oldCap > 0) {
        	// 如果旧的容量比最大容量还要大,那不能散列,返回旧的散列表
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 新的阈值是旧的两倍 double threshold 且容量也为旧的两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        // 如果旧容量<=0 而旧阈值>0,数组的新容量设置为老数组扩容的阈值 
        // 这个应该使用的是带参数的构造函数(这个已经将阈值弄为2的次方了(使用tableSizeFor方法),所以不用担心容量不为2的次方了)
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        
        // 这里是旧容量<=0 且旧阈值<=0 旧阈值<=0,代表使用的默认不带参数的构造函数
        // 第一次初始化散列表的操作到oldTab != null之前
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor; // 这里就是对使用的带参数的构造函数的后续处理
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        // 这里回答了为什么阈值之前不是容量和加载因子的乘积了,在resize初始化table时会重新赋值
        threshold = newThr;
        @SuppressWarnings({"unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        
        // 将旧散列表复制到新散列表中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode) // 是红黑树
                    	// 重新映射时,需要对红黑树进行拆分
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order 链表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        // 遍历链表,并将链表节点按原顺序进行分组
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 将分组后的链表映射到新桶中
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     * 将链表转为
     * 
     * 
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     * 根据键值删除键值对,如果哈希表中存在该键,那么返回键对应的值,否则返回null
     * @param  key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V remove(Object key) {
        Node<K,V> e;
        // 同样也是找到先用key算出hash再在removeNode中使用(n - 1) & hash进行其他运算
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored 值如果不匹配就忽略
     * @param matchValue if true only remove if value is equal 如果值相等是这个为true
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        // 桶不为空,映射的hash值也存在
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            // 在桶的首位就找到了对应的元素了,记录下来
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            // 不是在首位,就得去红黑树或者链表中查找了
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode) // 头节点不匹配,且头节点为TreeNode
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {  // 头节点不匹配,且头节点为Node
                	// 遍历链表,一旦匹配,跳出循环
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 找到了对应的节点,并且要么没传value要么value也能匹配,那么就分三种情况去删除了
            // 1.链表 2.红黑树 3.在桶的首位
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
            	// 如果待删除节点是TreeNode,使用红黑树的方法
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) // 如果待删除节点是头节点,更改桶中的头节点即可
                    tab[index] = node.next;
                // 在链表遍历过程中,p代表node节点的前驱节点
                else
                    p.next = node.next;
                ++modCount;
                --size;
                // 子类实现
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

还有处于比较后面的红黑树的一些代码(中间一部分没了解):

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         * 根据当前节点找到根节点
         */
        final TreeNode<K,V> root() {
        	// 遍历,直到parent为null为止
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }
         /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         * 
         * 从根节点开始,根据指定的key查找节点
         * 至于kc这个参数暂时也没弄清楚是干啥的,后面看到其他地方使用再理解吧,默认使用null即可
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                // 根据大小判断在此节点还是在此节点的左右枝
                if ((ph = p.hash) > h) // 左枝
                    p = pl;
                else if (ph < h) // 右枝
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk))) // 当前节点
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         * 从根节点开始查找
         * 先判断当前节点的parent是否为null即判断当前节点是否为根节点。
         * 如果不为根节点再调用root()方法找到根节点
         * 再调用根节点的find方法根据指定的key查找键值对
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }
         /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         * 
         * 将红黑树转为链表
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

Thanks

参考:

https://blog.csdn.net/qq_19431333/article/details/55505675
https://www.jianshu.com/p/2e2a18d02218
https://blog.csdn.net/u011240877/article/details/53351188?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1
https://blog.csdn.net/u011240877/article/details/53358305#hashmap-%E5%9C%A8-jdk-18-%E4%B8%AD%E6%96%B0%E5%A2%9E%E7%9A%84%E6%93%8D%E4%BD%9C-%E7%BA%A2%E9%BB%91%E6%A0%91%E4%B8%AD%E6%9F%A5%E6%89%BE%E5%85%83%E7%B4%A0-gettreenode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值