🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
🚀 算法题 🚀 |
🚩 题目链接
⛲ 题目描述
给你 k 枚相同的鸡蛋,并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑。
已知存在楼层 f ,满足 0 <= f <= n ,任何从 高于 f 的楼层落下的鸡蛋都会碎,从 f 楼层或比它低的楼层落下的鸡蛋都不会破。
每次操作,你可以取一枚没有碎的鸡蛋并把它从任一楼层 x 扔下(满足 1 <= x <= n)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋。
请你计算并返回要确定 f 确切的值 的 最小操作次数 是多少?
示例 1:
输入:k = 1, n = 2
输出:2
解释:
鸡蛋从 1 楼掉落。如果它碎了,肯定能得出 f = 0 。
否则,鸡蛋从 2 楼掉落。如果它碎了,肯定能得出 f = 1 。
如果它没碎,那么肯定能得出 f = 2 。
因此,在最坏的情况下我们需要移动 2 次以确定 f 是多少。
示例 2:
输入:k = 2, n = 6
输出:3
示例 3:
输入:k = 3, n = 14
输出:4
提示:
1 <= k <= 100
1 <= n <= 10^4
🌟 求解思路&实现代码&运行结果
⚡ 递归 + 二分 + dp
🥦 求解思路
- 题目要求确定在最坏情况下,使用 k 个鸡蛋和 n 层楼,找到鸡蛋不会摔碎的最高楼层的最小尝试次数。
- 动态规划:使用动态规划的思想,定义 dp[k][n] 表示 k 个鸡蛋和 n 层楼的最小尝试次数。
- 二分查找优化:
-
在递归过程中,使用二分查找来优化搜索区间,减少重复计算。
-
对于每个中间楼层 mid,计算两种情况:
-
鸡蛋碎了:需要在 mid
-