【LeetCode:108. 将有序数组转换为二叉搜索树 + 二叉树+递归】

本文介绍如何将已排序的整数数组转换为高度平衡的二叉搜索树,通过递归方法实现,每次选择数组中间元素作为根节点,保证左右子树高度差不超过1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述
在这里插入图片描述

🚩 题目链接

⛲ 题目描述

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。

示例 1:
在这里插入图片描述
在这里插入图片描述

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:
在这里插入图片描述

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 按 严格递增 顺序排列

🌟 求解思路&实现代码&运行结果


⚡ 二叉树+递归

🥦 求解思路
  1. 为了将这个有序数组还原为一棵二叉搜索树,我们可以设计一个递归函数,因为数组是有序的,我们每次取区间中最中间的数作为当前节点,然后分别向左子树和右子树递归下去,直到还原这棵二叉树。
  2. 有了基本的思路,接下来我们就来通过代码来实现一下递归的解法。
🥦 实现代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 * int val;
 * TreeNode left;
 * TreeNode right;
 * TreeNode() {}
 * TreeNode(int val) { this.val = val; }
 * TreeNode(int val, TreeNode left, TreeNode right) {
 * this.val = val;
 * this.left = left;
 * this.right = right;
 * }
 * }
 */
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return dfs(nums, 0, nums.length - 1);
    }

    public TreeNode dfs(int[] nums, int left, int right) {
        if (left > right)
            return null;
        if (left == right) {
            return new TreeNode(nums[left]);
        }
        int mid = left + right >> 1;
        TreeNode root = new TreeNode(nums[mid]);
        root.left = dfs(nums, left, mid - 1);
        root.right = dfs(nums, mid + 1, right);
        return root;
    }
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值