(九)巴菲特与索罗斯的投资习惯:术业有专攻

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai


(一)巴菲特与索罗斯的投资习惯:思考习惯的力量

(二)巴菲特与索罗斯的投资习惯:七种致命的投资信念

(三)巴菲特与索罗斯的投资习惯:保住现有财富

(四)巴菲特与索罗斯的投资习惯:乔治索罗斯不冒险吗?

(五)巴菲特与索罗斯的投资习惯:市场总是错的

(六)巴菲特与索罗斯的投资习惯:衡量什么取决于你

(七&八)巴菲特与索罗斯的投资习惯:集中于少数投资对象

(九)巴菲特与索罗斯的投资习惯:术业有专攻


巴菲特说过:同上帝一样,市场会帮助那些帮助他们自己的人,同上帝不一样的是,市场从不原谅那些不知道自己在做什么的人。

投资大师只投资于他懂的领域。失败的投资者没有认识到自身行为的深刻理解是成功的一个根本性先决条件。很少认识到盈利机会存在于他自己的专长领域中。

每一个成功的人都有一片明确的领地。比如,我敢打赌你能立刻说出约翰麦肯罗,迈克尔乔丹,贝比鲁斯和泰格伍兹以什么闻名,即便你像我一样对任何体育运动不感兴趣。而且直觉告诉你篮球场上的麦肯罗和温布尔登网球赛中的贝比鲁思会像离开水的鱼一样狼狈。

同样每一个成功的投资者都有他自己的领地。如果你已经在投资圈中待了哪怕很短的一段时间,你也可以将下面的每一个名字同某种特定的投资特长或者投资风格联系在一起。

  • 本杰明格雷厄姆
  • 沃伦巴菲特
  • 乔治索罗斯
  • 皮的林奇
  • 约翰坦普尔顿
  • 吉姆罗杰斯
  • 杰西利弗莫尔

每一个成功的投资者都把注意力集中在一小部分投资对象中,他们擅长这些,也只擅长这些。这并不是偶然的。

投资大师发展自己的投资哲学的过程决定了他懂什么类型的投资。这划定了他的能力范围,只要他不超过这个范围,他就拥有了一种能让他的表现超出市场总体表现的竞争优势。

这种竞争优势就是衡量一笔投资是否有理想的平均利润期望值的能力。只要他关注的是其他任何类型的投资,他的衡量工具就会立刻失效。而只要无法衡量,他判断一笔投资是否可能盈利的能力就与普通投资者没什么两样了。

投资大师并没有刻意去取占领某个特定的生态市场领地。这只是由他的能力范围自然决定的,对自己懂什么又不懂什么,他心中如明镜般清楚。

用巴菲特的话说:”关于你的能力范围,最重要的事情不是这个范围有多么大,而是你划定的边界有多么合理。“

用自己的投资标准透视观察投资世界,只会看到那些他真正懂的投资对象。

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计实现 本系统的设计实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的数据库进行连接,实现灵活的图像拼接功能。 本系统的设计实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值