平板电极电势阶跃扩散电流的严格推导
1. 控制方程建立
1.1 基本假设
- 一维半无限扩散体系( x ≥ 0 x \geq 0 x≥0)
- 氧化还原电对: O + n e − ⇌ R O + ne^- \rightleftharpoons R O+ne−⇌R
- 初始条件:
c O ( x , 0 ) = c ∗ , c R ( x , 0 ) = 0 c_O(x,0) = c^*,\quad c_R(x,0) = 0 cO(x,0)=c∗,cR(x,0)=0 - 边界条件:
c O ( ∞ , t ) = c ∗ , c R ( ∞ , t ) = 0 c_O(\infty,t) = c^*,\quad c_R(\infty,t) = 0 cO(∞,t)=c∗,cR(∞,t)=0
1.2 Fick第二定律
∂ c O ∂ t = D O ∂ 2 c O ∂ x 2 ( 1 ) ∂ c R ∂ t = D R ∂ 2 c R ∂ x 2 ( 2 ) \frac{\partial c_O}{\partial t} = D_O \frac{\partial^2 c_O}{\partial x^2} \quad (1) \\ \frac{\partial c_R}{\partial t} = D_R \frac{\partial^2 c_R}{\partial x^2} \quad (2) ∂t∂cO=DO∂x2∂2cO(1)∂t∂cR=DR∂x2∂2cR(2)
2. Laplace变换求解
2.1 变换后方程
定义变换:
L
{
c
(
x
,
t
)
}
=
c
^
(
x
,
s
)
\mathcal{L}\{c(x,t)\} = \hat{c}(x,s)
L{c(x,t)}=c^(x,s)
得到:
s
c
^
O
−
c
∗
=
D
O
d
2
c
^
O
d
x
2
(
3
)
s
c
^
R
=
D
R
d
2
c
^
R
d
x
2
(
4
)
s\hat{c}_O - c^* = D_O \frac{d^2\hat{c}_O}{dx^2} \quad (3) \\ s\hat{c}_R = D_R \frac{d^2\hat{c}_R}{dx^2} \quad (4)
sc^O−c∗=DOdx2d2c^O(3)sc^R=DRdx2d2c^R(4)
2.2 通解形式
c ^ O ( x , s ) = c ∗ s + A ( s ) e − x s / D O ( 5 ) c ^ R ( x , s ) = B ( s ) e − x s / D R ( 6 ) \hat{c}_O(x,s) = \frac{c^*}{s} + A(s)e^{-x\sqrt{s/D_O}} \quad (5) \\ \hat{c}_R(x,s) = B(s)e^{-x\sqrt{s/D_R}} \quad (6) c^O(x,s)=sc∗+A(s)e−xs/DO(5)c^R(x,s)=B(s)e−xs/DR(6)
2.3 边界条件处理
(1) 流量平衡:
D O d c ^ O d x ∣ x = 0 + D R d c ^ R d x ∣ x = 0 = 0 D_O \left.\frac{d\hat{c}_O}{dx}\right|_{x=0} + D_R \left.\frac{d\hat{c}_R}{dx}\right|_{x=0} = 0 DOdxdc^O x=0+DRdxdc^R x=0=0
(2) Nernst条件:
c ^ O ( 0 , s ) c ^ R ( 0 , s ) = θ = exp [ n F R T ( E f − E ∘ ) ] \frac{\hat{c}_O(0,s)}{\hat{c}_R(0,s)} = \theta = \exp\left[\frac{nF}{RT}(E_f - E^\circ)\right] c^R(0,s)c^O(0,s)=θ=exp[RTnF(Ef−E∘)]
3. 电流密度推导
3.1 表面流量计算
i ^ ( s ) = n F D O d c ^ O d x ∣ x = 0 = − n F D O A ( s ) s D O \hat{i}(s) = nFD_O \left.\frac{d\hat{c}_O}{dx}\right|_{x=0} = -nFD_O A(s)\sqrt{\frac{s}{D_O}} i^(s)=nFDOdxdc^O x=0=−nFDOA(s)DOs
3.2 系数求解
联立方程解得:
A
(
s
)
=
−
c
∗
s
(
1
+
1
θ
D
O
D
R
)
−
1
A(s) = -\frac{c^*}{s}\left(1 + \frac{1}{\theta}\sqrt{\frac{D_O}{D_R}}\right)^{-1}
A(s)=−sc∗(1+θ1DRDO)−1
3.3 Laplace逆变换
利用变换对:
L
−
1
{
1
s
}
=
1
π
t
\mathcal{L}^{-1}\left\{\frac{1}{\sqrt{s}}\right\} = \frac{1}{\sqrt{\pi t}}
L−1{s1}=πt1
得到Cottrell方程:
i
(
t
)
=
n
F
c
∗
D
O
π
t
(
1
+
1
θ
D
O
D
R
)
−
1
i(t) = \frac{nFc^*\sqrt{D_O}}{\sqrt{\pi t}} \left(1 + \frac{1}{\theta}\sqrt{\frac{D_O}{D_R}}\right)^{-1}
i(t)=πtnFc∗DO(1+θ1DRDO)−1
4. 特例分析
4.1 完全还原( θ → ∞ \theta \to \infty θ→∞)
i ( t ) = n F c ∗ D O π t i(t) = nFc^*\sqrt{\frac{D_O}{\pi t}} i(t)=nFc∗πtDO
4.2 等扩散系数( D O = D R D_O = D_R DO=DR)
i ( t ) = n F c ∗ D O π t ⋅ θ 1 + θ i(t) = \frac{nFc^*\sqrt{D_O}}{\sqrt{\pi t}} \cdot \frac{\theta}{1+\theta} i(t)=πtnFc∗DO⋅1+θθ
5. 数学验证
5.1 量纲分析
[ i ] = C ⋅ m o l − 1 ⋅ m o l ⋅ c m − 3 ⋅ c m 2 ⋅ s − 1 / 2 s 1 / 2 = A ⋅ c m − 2 [i] = \frac{C\cdot mol^{-1} \cdot mol\cdot cm^{-3} \cdot cm^2\cdot s^{-1/2}}{s^{1/2}} = A\cdot cm^{-2} [i]=s1/2C⋅mol−1⋅mol⋅cm−3⋅cm2⋅s−1/2=A⋅cm−2
5.2 极限行为
- t → 0 + t\to 0^+ t→0+: i ( t ) → ∞ i(t) \to \infty i(t)→∞
- t → ∞ t\to \infty t→∞: i ( t ) → 0 i(t) \to 0 i(t)→0
6.参数影响分析
参数变化 | 对电流的影响 | 对浓度分布的影响 | 物理机制说明 |
---|---|---|---|
c ↑* | 线性增大i ∝ c* | 各位置浓度幅值同比增加 | 本体浓度增加直接提升电流 |
D_O ↑ | 平方根增大i ∝ √D_O | 浓度梯度区域扩展加快 | 传质速率提升 |
θ ↑ (电势负移) | 渐近趋近极限值 | 电极表面[O]降低,[R]升高 | Nernst平衡移动导致 |
附录:关键公式
公式 | 说明 |
---|---|
erfc ( x ) = 1 − erf ( x ) \text{erfc}(x) = 1-\text{erf}(x) erfc(x)=1−erf(x) | 互补误差函数 |
L { t − 1 / 2 } = π / s \mathcal{L}\{t^{-1/2}\} = \sqrt{\pi/s} L{t−1/2}=π/s | Laplace变换对 |