一维有界Ward-Tordai方程详细推导

一维有界Ward-Tordai方程详细推导(含Laplace变换详解)

1. 物理模型与基本方程

1.1 系统描述

考虑有限厚度液层中的扩散-吸附过程:

  • 空间域: x ∈ [ 0 , b ] x \in [0, b] x[0,b]
  • 初始浓度: c ( x , 0 ) = c 0 c(x,0) = c_0 c(x,0)=c0
  • 边界条件:
    • x = 0 x=0 x=0:吸附边界 d Γ ( t ) d t = D ∂ c ∂ x ∣ x = 0 \frac{dΓ(t)}{dt} = D \left.\frac{\partial c}{\partial x}\right|_{x=0} dtdΓ(t)=Dxc x=0
    • x = b x=b x=b:固定浓度边界 c ( b , t ) = c 0 c(b,t) = c_0 c(b,t)=c0

1.2 控制方程

∂ c ∂ t = D ∂ 2 c ∂ x 2 ( 1 ) \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad (1) tc=Dx22c(1)

2. Laplace变换详细推导

2.1 Laplace变换定义

对时间变量 t t t进行变换:
L { c ( x , t ) } = c ^ ( x , s ) = ∫ 0 ∞ e − s t c ( x , t ) d t \mathcal{L}\{c(x,t)\} = \hat{c}(x,s) = \int_0^\infty e^{-st}c(x,t)dt L{c(x,t)}=c^(x,s)=0estc(x,t)dt

2.2 变换步骤分解

(1) 对扩散方程变换

L { ∂ c ∂ t } = s c ^ ( x , s ) − c ( x , 0 ) = s c ^ ( x , s ) − c 0 \mathcal{L}\left\{\frac{\partial c}{\partial t}\right\} = s\hat{c}(x,s) - c(x,0) = s\hat{c}(x,s) - c_0 L{tc}=sc^(x,s)c(x,0)=sc^(x,s)c0
L { D ∂ 2 c ∂ x 2 } = D d 2 c ^ d x 2 \mathcal{L}\left\{D \frac{\partial^2 c}{\partial x^2}\right\} = D \frac{d^2\hat{c}}{dx^2} L{Dx22c}=Ddx2d2c^
得到:
D d 2 c ^ d x 2 = s c ^ − c 0 ( 2 ) D \frac{d^2\hat{c}}{dx^2} = s\hat{c} - c_0 \quad (2) Ddx2d2c^=sc^c0(2)

(2) 边界条件变换
  • x = 0 x=0 x=0边界:
    L { d Γ d t } = s Γ ^ ( s ) − Γ ( 0 ) = D d c ^ d x ∣ x = 0 \mathcal{L}\left\{\frac{dΓ}{dt}\right\} = s\hat{Γ}(s) - Γ(0) = D \left.\frac{d\hat{c}}{dx}\right|_{x=0} L{dtdΓ}=sΓ^(s)Γ(0)=Ddxdc^ x=0
    假设 Γ ( 0 ) = 0 Γ(0)=0 Γ(0)=0
    s Γ ^ ( s ) = D d c ^ d x ∣ x = 0 ( 3 ) s\hat{Γ}(s) = D \left.\frac{d\hat{c}}{dx}\right|_{x=0} \quad (3) sΓ^(s)=Ddxdc^ x=0(3)

  • x = b x=b x=b边界:
    L { c ( b , t ) } = c 0 s ⇒ c ^ ( b , s ) = c 0 s ( 4 ) \mathcal{L}\{c(b,t)\} = \frac{c_0}{s} ⇒ \hat{c}(b,s) = \frac{c_0}{s} \quad (4) L{c(b,t)}=sc0c^(b,s)=sc0(4)

2.3 方程求解

(1) 解的非齐次形式

方程(2)可写为:
d 2 c ^ d x 2 − s D c ^ = − c 0 D \frac{d^2\hat{c}}{dx^2} - \frac{s}{D}\hat{c} = -\frac{c_0}{D} dx2d2c^Dsc^=Dc0
通解结构:
c ^ ( x , s ) = c ^ h ( x , s ) + c ^ p ( x , s ) \hat{c}(x,s) = \hat{c}_h(x,s) + \hat{c}_p(x,s) c^(x,s)=c^h(x,s)+c^p(x,s)

特解取常数:
c ^ p ( x , s ) = c 0 s \hat{c}_p(x,s) = \frac{c_0}{s} c^p(x,s)=sc0

齐次方程解:
c ^ h ( x , s ) = A cosh ⁡ ( x s / D ) + B sinh ⁡ ( x s / D ) \hat{c}_h(x,s) = A\cosh\left(x\sqrt{s/D}\right) + B\sinh\left(x\sqrt{s/D}\right) c^h(x,s)=Acosh(xs/D )+Bsinh(xs/D )

完整解:
c ^ ( x , s ) = A cosh ⁡ ( x s / D ) + B sinh ⁡ ( x s / D ) + c 0 s ( 5 ) \hat{c}(x,s) = A\cosh\left(x\sqrt{s/D}\right) + B\sinh\left(x\sqrt{s/D}\right) + \frac{c_0}{s} \quad (5) c^(x,s)=Acosh(xs/D )+Bsinh(xs/D )+sc0(5)

(2) 边界条件应用

x = b x=b x=b
A cosh ⁡ ( b s / D ) + B sinh ⁡ ( b s / D ) = 0 ( 6 ) A\cosh\left(b\sqrt{s/D}\right) + B\sinh\left(b\sqrt{s/D}\right) = 0 \quad (6) Acosh(bs/D )+Bsinh(bs/D )=0(6)

x = 0 x=0 x=0
d c ^ d x ∣ x = 0 = A ⋅ 0 + B s / D = s Γ ^ ( s ) D ( 7 ) \left.\frac{d\hat{c}}{dx}\right|_{x=0} = A\cdot 0 + B\sqrt{s/D} = \frac{s\hat{Γ}(s)}{D} \quad (7) dxdc^ x=0=A0+Bs/D =DsΓ^(s)(7)

由式(6)解得:
A = − B tanh ⁡ ( b s / D ) ( 8 ) A = -B \tanh\left(b\sqrt{s/D}\right) \quad (8) A=Btanh(bs/D )(8)

将式(8)代入式(7):
B = s Γ ^ ( s ) D s / D = Γ ^ ( s ) s D 1 / 2 ( 9 ) B = \frac{s\hat{Γ}(s)}{D\sqrt{s/D}} = \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \quad (9) B=Ds/D sΓ^(s)=D1/2Γ^(s)s (9)

(3) 浓度解表达式

将系数代回式(5):
c ^ ( x , s ) = c 0 s + Γ ^ ( s ) s D 1 / 2 [ − tanh ⁡ ( b s / D ) cosh ⁡ ( x s / D ) + sinh ⁡ ( x s / D ) ] ( 10 ) \hat{c}(x,s) = \frac{c_0}{s} + \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \left[ -\tanh\left(b\sqrt{s/D}\right)\cosh\left(x\sqrt{s/D}\right) + \sinh\left(x\sqrt{s/D}\right) \right] \quad (10) c^(x,s)=sc0+D1/2Γ^(s)s [tanh(bs/D )cosh(xs/D )+sinh(xs/D )](10)

2.4 吸附量方程推导

(1) 界面浓度关系

x = 0 x=0 x=0处的浓度:
c ^ ( 0 , s ) = c 0 s − Γ ^ ( s ) s D 1 / 2 tanh ⁡ ( b s / D ) ( 11 ) \hat{c}(0,s) = \frac{c_0}{s} - \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \quad (11) c^(0,s)=sc0D1/2Γ^(s)s tanh(bs/D )(11)

(2) 吸附等温式耦合

假设线性吸附:
Γ ( t ) = K c ( 0 , t ) ⇒ Γ ^ ( s ) = K c ^ ( 0 , s ) ( 12 ) Γ(t) = K c(0,t) ⇒ \hat{Γ}(s) = K \hat{c}(0,s) \quad (12) Γ(t)=Kc(0,t)Γ^(s)=Kc^(0,s)(12)

联立式(11)(12):
Γ ^ ( s ) = K c 0 s − K s D 1 / 2 tanh ⁡ ( b s / D ) Γ ^ ( s ) \hat{Γ}(s) = \frac{K c_0}{s} - \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \hat{Γ}(s) Γ^(s)=sKc0D1/2Ks tanh(bs/D )Γ^(s)

整理得:
Γ ^ ( s ) [ 1 + K s D 1 / 2 tanh ⁡ ( b s / D ) ] = K c 0 s \hat{Γ}(s) \left[ 1 + \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \right] = \frac{K c_0}{s} Γ^(s)[1+D1/2Ks tanh(bs/D )]=sKc0

最终解:
Γ ^ ( s ) = K c 0 s [ 1 + K s D 1 / 2 tanh ⁡ ( b s / D ) ] ( 13 ) \hat{Γ}(s) = \frac{K c_0}{s \left[ 1 + \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \right]} \quad (13) Γ^(s)=s[1+D1/2Ks tanh(bs/D )]Kc0(13)

3. Laplace逆变换分析

3.1 短时间近似( t ≪ b 2 / D t \ll b^2/D tb2/D

s → ∞ s \to \infty s时:
tanh ⁡ ( b s / D ) ≈ 1 \tanh\left(b\sqrt{s/D}\right) \approx 1 tanh(bs/D )1
方程(13)简化为:
Γ ^ ( s ) ≈ K c 0 s + K s 1 / 2 / D 1 / 2 \hat{Γ}(s) \approx \frac{K c_0}{s + K s^{1/2}/D^{1/2}} Γ^(s)s+Ks1/2/D1/2Kc0

逆变换得经典解:
Γ ( t ) ≈ 2 c 0 D t π ( t → 0 ) Γ(t) \approx 2c_0 \sqrt{\frac{D t}{\pi}} \quad (t \to 0) Γ(t)2c0πDt (t0)

3.2 长时间近似( t ≫ b 2 / D t \gg b^2/D tb2/D

s → 0 s \to 0 s0时:
tanh ⁡ ( b s / D ) ≈ b s / D \tanh\left(b\sqrt{s/D}\right) \approx b\sqrt{s/D} tanh(bs/D )bs/D
方程(13)简化为:
Γ ^ ( s ) ≈ K c 0 s ( 1 + K b / D ) = K c 0 1 + K b / D ⋅ 1 s \hat{Γ}(s) \approx \frac{K c_0}{s (1 + K b/D)} = \frac{K c_0}{1 + K b/D} \cdot \frac{1}{s} Γ^(s)s(1+Kb/D)Kc0=1+Kb/DKc0s1

逆变换得稳态解:
Γ ( t ) → K c 0 1 + K b / D ( t → ∞ ) Γ(t) \to \frac{K c_0}{1 + K b/D} \quad (t \to \infty) Γ(t)1+Kb/DKc0(t)

4. Laplace逆变换详解

(1) 留数定理法

Γ ( t ) = ∑ Res [ e s t Γ ^ ( s ) ] s = s k Γ(t) = \sum \text{Res}\left[ e^{st}\hat{Γ}(s) \right]_{s=s_k} Γ(t)=Res[estΓ^(s)]s=sk
极点来源:

  1. s = 0 s=0 s=0:简单极点
  2. 1 + K s D tanh ⁡ ( b s / D ) = 0 1 + \frac{K\sqrt{s}}{\sqrt{D}} \tanh(b\sqrt{s/D}) = 0 1+D Ks tanh(bs/D )=0:无穷多个根
(2) 极点分析

s = 0 s=0 s=0
留数计算得稳态解:
Γ e q = K c 0 1 + K b / D Γ_{eq} = \frac{K c_0}{1 + K b / D} Γeq=1+Kb/DKc0

非零极点 s n s_n sn
需数值求解超越方程:
1 + K s n D tan ⁡ ( b s n / D ) = 0 ( 设 s = − a 2 ) 1 + \frac{K\sqrt{s_n}}{\sqrt{D}} \tan\left(b\sqrt{s_n/D}\right) = 0 \quad (\text{设}s = -a^2) 1+D Ksn tan(bsn/D )=0(s=a2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值