由于工作的原因,在运行tensorflow时,有时候必须中断训练,而为了下次再训练的时候可以接着上次的模型继续运行,做了如下整理:
代码如下:
import os
import random
import tensorflow as tf
import pickle
import numpy as np
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
f = open('lexcion.pickle', 'rb')
lex = pickle.load(f)
f.close()
# print(np.size(lex))
def get_random_line(file, point):
file.seek(point)
file.readline()
return file.readline()
# 从文件中随机选择n条记录
def get_n_random_line(file_name, n=150):
lines = []
file = open(file_name, encoding='latin-1')
total_bytes = os.stat(file_name).st_size
for i in range(n):
random_point = random.randint(0, total_bytes)
lines.append(get_random_line(file, random_point))
file.close()
return lines
def get_test_dataset(test_file):
with open(test_file, encoding='latin-1') as f:
test_x = []
test_y = []
lemmatizer = WordNetLemmatizer()
for line in f:
label = line.split(':%:%:%:')[0]
tweet = line.split(':%:%:%:')[1]
words = word_tokenize(tweet.lower())
words = [lemmatizer.lemmatize(word) for word in words]
features = np.zeros(len(lex))
for word in words:
if word in lex:
features[lex.index(word)] = 1
test_x.append(list(features))
test_y.append(eval(label))
return test_x, test_y
test_x, test_y = get_test_dataset('tesing.csv')
##############################################################################
input_size = len(lex)
print(input_size)
num_classes = 3
X = tf.placeholder(tf.int32, [None, input_size])
Y = tf.placeholder(tf.float32, [None, num_classes])
dropout_keep_prob = tf.placeholder(tf.float32)
batch_size = 10
def neural_network():
# embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
embedding_size = 128
W = tf.Variable(tf.random_uniform([input_size, embedding_size], -1.0, 1.0))
embedded_chars = tf.nn.embedding_lookup(W, X)
embedded_chars_expanded = tf.expand_dims(embedded_chars, -1)
# convolution + maxpool layer
num_filters = 128
filter_sizes = [3,4,5]
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[num_filters]))
conv = tf.nn.conv2d(embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID")
h = tf.nn.relu(tf.nn.bias_add(conv, b))
pooled = tf.nn.max_pool(h, ksize=[1, input_size - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID')
pooled_outputs.append(pooled)
num_filters_total = num_filters * len(filter_sizes)
h_pool = tf.concat(3, pooled_outputs)
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])
# dropout
with tf.name_scope("dropout"):
h_drop = tf.nn.dropout(h_pool_flat, dropout_keep_prob)
# output
with tf.name_scope("output"):
W = tf.get_variable("W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]))
output = tf.nn.xw_plus_b(h_drop, W, b)
return output
def train_neural_network():
output = neural_network()
optimizer = tf.train.AdamOptimizer(1e-3)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
grads_and_vars = optimizer.compute_gradients(loss)
train_op = optimizer.apply_gradients(grads_and_vars)
saver = tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
lemmatizer = WordNetLemmatizer()
i = 0
pre_accuracy = 0
while True:
batch_x = []
batch_y = []
#每次循环时,先判断
if os.path.exists('checkpoint'):
saver.restore(sess, tf.train.latest_checkpoint('.')) #恢复保存的session
print("-----------")
try:
lines = get_n_random_line('training.csv', batch_size)
for line in lines:
label = line.split(':%:%:%:')[0]
tweet = line.split(':%:%:%:')[1]
words = word_tokenize(tweet.lower())
words = [lemmatizer.lemmatize(word) for word in words]
features = np.zeros(len(lex))
for word in words:
if word in lex:
features[lex.index(word)] = 1 # 一个句子中某个词可能出现两次,可以用+=1,其实区别不大
batch_x.append(list(features))
batch_y.append(eval(label))
_, loss_ = sess.run([train_op, loss], feed_dict={X:batch_x, Y:batch_y, dropout_keep_prob:0.5})
print(loss_)
except Exception as e:
print(e)
if i % 10 == 0:
predictions = tf.argmax(output, 1)
correct_predictions = tf.equal(predictions, tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"))
accur = sess.run(accuracy, feed_dict={X:test_x[0:50], Y:test_y[0:50], dropout_keep_prob:1.0})
print('第%s步的准确率: %.3f' % (i, accur))
saver.save(sess, './model.ckpt') # 每隔10次保存一下模型
i += 1
train_neural_network()