从交叉熵讲,
L o s s = L ( y , p ^ ) = − y l o g ( p ^ ) − ( 1 − y ) l o g ( 1 − p ^ ) Loss = L(y, \hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p}) Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)
以二分类问题为例,
L = 1 N ( ∑ y i = 1 m − l o g ( p ^ ) + ∑ y i = 0 n − l o g ( 1 − p ^ ) ) L=\frac{1}{N}(\sum_{y_i =1}^m -log(\hat{p})+\sum_{y_i=0}^{n}-log(1-\hat{p})) L=N1(yi<