python打卡DAY8

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

data=pd.read_csv(r'data.csv')

#查看数据基本情况

print(f'{data.info()}\n{data.isnull().sum()}\n{data.head()}')

#设置中文字体与负号正确显示

plt.rcParams['font.sans-serif']=['STHeiti']

plt.rcParams['axes.unicode_minus']=True

plt.rcParams['figure.dpi']=100

# plt.figure(figsize=(6,4))

# sns.boxplot(x=data['Annual Income'])

# plt.title('annual income photo')

# plt.xlabel('annual income')

# plt.tight_layout()

# plt.show()

# plt.figure(figsize=(6,4))

# sns.boxplot(x=data['Annual Income'])

# plt.title('年收入箱线图')

# plt.xlabel('年收入')

# plt.tight_layout()

# plt.show()

# plt.figure(figsize=(6,4))

# sns.boxplot(x='Credit Default',y='Annual Income',data=data)

# plt.title('annual income vs, credit default')

# plt.xlabel('credit default')

# plt.ylabel('annual income')

# plt.xticks([0,1],['否','是'])

# plt.tight_layout()

# plt.show()

# plt.figure(figsize=(6,4))

# sns.histplot(x='Annual Income',

# hue='Credit Default',

# data=data,

# kde=True,

# element='step')

# plt.title('annual income')

# plt.xlabel('annual income')

# plt.ylabel('count')

# plt.legend(labels=['否','是'])

# plt.tight_layout()

# plt.show()

# plt.figure(figsize=(6,4))

# sns.countplot(x='Number of Open Accounts',

# hue='Credit Default',

# data=data)

# plt.xticks(rotation=45,ha='right')

# plt.xlabel('number of open account')

# plt.ylabel('count')

# plt.legend(labels=['否','是'])

# plt.tight_layout()

# plt.show()

# print(data.info())

# data['Open Accounts Group']=pd.cut(data['Number of Open Accounts'],

# bins=[0,5,10,15,20,float('inf')],

# labels=['0-5','6-10','11-15','16-20','20+'])

# plt.figure(figsize=(6,4))

# sns.countplot(x='Open Accounts Group',

# hue='Credit Default',

# data=data)

# plt.title('number of open accounts(grouped) vs. credit default')

# plt.xlabel('number of open account group')

# plt.ylabel('count')

# plt.legend(labels=['否','是'])

# plt.tight_layout()

# plt.show()

#填补缺失值

for i in data.columns:

if data[i].dtype!='object':

if data[i].isnull().sum()>0:

data[i].fillna(data[i].mean(),inplace=True)

else:

if data[i].isnull().sum()>0:

data[i].fillna(data[i].mode()[0],inplace=True)

print(data.info())

print(data['Years in current job'].value_counts())

print(data['Years in current job'].value_counts())

#数据编码

print(f'{data["Home Ownership"].value_counts()}\n{data["Years in current job"].value_counts()}\n{data["Purpose"].value_counts()}\n{data["Term"].value_counts()}')

mapping={

'10+ years':0,

'9 years':1,

'8 years':2,

'7 years':3,

'6 years':4,

'5 years':5,

'4 years':6,

'3 years':7,

'2 years':8,

'1 year':9,

'< 1 year':10

}

data['Years in current job']=data['Years in current job'].map(mapping)

print(data.info())

print("所有唯一值:", data['Years in current job'].unique())

print(data['Years in current job'].value_counts())

data=pd.get_dummies(data,drop_first=True)

dummies_list=[]

data2=pd.read_csv(r'data.csv')

for i in data.columns:

if i not in data2.columns:

dummies_list.append(i)

for i in dummies_list:

data[i]=data[i].astype(int)

print(data.head())

print(f'{data.columns}\n{data.info()}\n{data.head()}')

# continuous_features=[

# 'Annual Income', 'Years in current job', 'Tax Liens',

# 'Number of Open Accounts', 'Years of Credit History',

# 'Maximum Open Credit', 'Number of Credit Problems',

# 'Months since last delinquent', 'Bankruptcies', 'Current Loan Amount',

# 'Current Credit Balance', 'Monthly Debt', 'Credit Score'

# ]

# correlation_matrix=data[continuous_features].corr()

# plt.figure(figsize=(12,10))

# sns.heatmap(correlation_matrix,annot=True,cmap='coolwarm',vmin=-1,vmax=1)

# plt.title('相关热力图')

# plt.xticks(rotation=45,ha='right')

# plt.tight_layout()

# plt.show()

features=['Annual Income','Years in current job','Tax Liens','Number of Open Accounts']

# fig,axes=plt.subplots(2,2,figsize=(12,10))

# i=0

# feature=features[i]

# axes[0,0].boxplot(data[feature].dropna())

# axes[0,0].set_title(f'boxplot of {feature}')

# axes[0,0].set_ylabel(feature)

# i=1

# feature=features[i]

# axes[0,1].boxplot(data[feature].dropna())

# axes[0,1].set_title(f'boxplot of {feature}')

# axes[0,1].set_ylabel(feature)

# i=2

# feature=features[i]

# axes[1,0].boxplot(data[feature].dropna())

# axes[1,0].set_title(f'boxplot of {feature}')

# axes[1,0].set_ylabel(feature)

# i=3

# feature=features[i]

# axes[1,1].boxplot(data[feature].dropna())

# axes[1,1].set_title(f'boxplot of {feature}')

# axes[1,1].set_ylabel(feature)

# plt.tight_layout()

# plt.show()

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i in range(len(features)):

# row=i//2

# col=i%2

# feature=features[i]

# axes[row,col].boxplot(data[feature].dropna())

# axes[row,col].set_title(f'boxplot of {feature}')

# axes[row,col].set_ylabel(feature)

# plt.tight_layout()

# plt.show()


 

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i,feature in enumerate(features):

# row=i//2

# col=i%2

# axes[row,col].boxplot(data[feature].dropna())

# axes[row,col].set_title(f'boxplot of {feature}')

# axes[row,col].set_ylabel(feature)

# plt.tight_layout()

# plt.show()

#另一种表达方式:调用seaborn库

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i,feature in enumerate(features):

# row=i//2

# col=i%2

# sns.boxplot(y=data[feature].dropna(),ax=axes[row,col])

# axes[row,col].set_title(f'boxplot of {feature}')

# axes[row,col].set_ylabel(feature)

# plt.tight_layout()

# plt.show()


 

# #这里是重点!!!!!!!!!!!!!!!!

# fig,axes=plt.subplots(2,2,figsize=(6,4))

# for i,feature in enumerate(features):

# row=i//2

# col=i%2

# sns.histplot(

# x=feature,

# hue='Credit Default',

# data=data,

# kde=True,

# element='step',

# ax=axes[row,col]

# )

# axes[row,col].set_title(f'histplot of {feature}')

# axes[row,col].set_xlabel(feature)

# axes[row,col].set_ylabel(f'count')

# plt.tight_layout()

# plt.show()



 

from sklearn.model_selection import train_test_split

x=data.drop(['Credit Default'],axis=1)

y=data['Credit Default']

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

print(f'train:{x_train.shape}\ntest:{x_test.shape}')


 

from sklearn.svm import SVC #支持向量机分类器

from sklearn.neighbors import KNeighborsClassifier #K近邻分类器

from sklearn.linear_model import LogisticRegression #逻辑回归分类器

import xgboost as xgb #XGBoost分类器

import lightgbm as lgb #LightGBM分类器

from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from catboost import CatBoostClassifier #CatBoost分类器

from sklearn.tree import DecisionTreeClassifier #决策树分类器

from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标

from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵

import warnings #用于忽略警告信息

warnings.filterwarnings("ignore") # 忽略所有警告信息

#SVM

svm_model=SVC(random_state=42)

svm_model.fit(x_train,y_train)

svm_pred=svm_model.predict(x_test)

print('\nSVM分类报告:')

print(classification_report(y_test,svm_pred))

print('SVM混淆矩阵:')

print(confusion_matrix(y_test,svm_pred))

svm_accuracy=accuracy_score(y_test,svm_pred)

svm_precision=precision_score(y_test,svm_pred)

svm_recall=recall_score(y_test,svm_pred)

svm_f1=f1_score(y_test,svm_pred)

print('SVM模型评估指标')

print(f'准确率:{svm_accuracy:.4f}\n精确率:{svm_precision}\n召回率:{svm_recall:.4f}\nF1值:{svm_f1:.4f}')

#RandomForest

rf_model=RandomForestClassifier(random_state=42)

rf_model.fit(x_train,y_train)

rf_pred=rf_model.predict(x_test)

print('\n随机森林分类报告:')

print(classification_report(y_test,rf_pred))

print('\n随机森林 混淆矩阵')

print(confusion_matrix(y_test,rf_pred))


 

#XGBoost

xgb_model=xgb.XGBClassifier(random_state=42)

xgb_model.fit(x_train,y_train)

xgb_pred=xgb_model.predict(x_test)

print('\nXGBoost分类报告')

print(classification_report(y_test,xgb_pred))

print('XGBOOst混淆矩阵')

print(confusion_matrix(y_test,xgb_pred))

#lightGBM

lgb_model=lgb.LGBMClassifier(random_state=42)

lgb_model.fit(x_train,y_train)

lgb_pred=lgb_model.predict(x_test)

print('\nLightGBM分类报告')

print(classification_report(y_test,lgb_pred))

print('LightGBM混淆矩阵')

print(confusion_matrix(y_test,lgb_pred))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值