class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int p = m-- + n-- - 1;
while (m >= 0 && n >= 0) {
nums1[p–] = nums1[m] > nums2[n] ? nums1[m–] : nums2[n–];
}
while (n >= 0) {
nums1[p–] = nums2[n–];
}
}
HIGH.11 合并两个排序的链表
输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的。
示例1:
输入:1->2->4, 1->3->4
输出:1->1->2->3->4->4
限制:
0 <= 链表长度 <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/he-bing-liang-ge-pai-xu-de-lian-biao-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
迭代
class Solution {
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode dummyHead = new ListNode(-1), pre = dummyHead;
while (l1 != null && l2 != null) {
if (l1.val <= l2.val) {
pre.next = l1;
pre = pre.next;
l1 = l1.next;
} else {
pre.next = l2;
pre = pre.next;
l2 = l2.next;
}
}
if (l1 != null) {
pre.next = l1;
}
if (l2 != null) {
pre.next = l2;
}
return dummyHead.next;
}
}
递归
class Solution {
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
if (l1 == null) {
return l2;
}
if (l2 == null) {
return l1;
}
if (l1.val <= l2.val) {
l1.next = mergeTwoLists(l1.next, l2);
return l1;
} else {
l2.next = mergeTwoLists(l1, l2.next);
return l2;
}
}
}
HIGH.12 合并K 个排序链表
给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:
输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:
输入:lists = []
输出:[]
示例 3:
输入:lists = [[]]
输出:[]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/merge-k-sorted-lists
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路巨简单,难得一次都不用调试!!!循环直接搞定,什么分治大法我不懂!
用容量为K的最小堆优先队列,把链表的头结点都放进去,然后出队当前优先队列中最小的,挂上链表,,然后让出队的那个节点的下一个入队,再出队当前优先队列中最小的,直到优先队列为空。
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists.length == 0) {
return null;
}
ListNode dummyHead = new ListNode(0);
ListNode curr = dummyHead;
PriorityQueue pq = new PriorityQueue<>(new Comparator() {
@Override
public int compare(ListNode o1, ListNode o2) {
return o1.val - o2.val;
}
});
for (ListNode list : lists) {
if (list == null) {
continue;
}
pq.add(list);
}
while (!pq.isEmpty()) {
ListNode nextNode = pq.poll();
curr.next = nextNode;
curr = curr.next;
if (nextNode.next != null) {
pq.add(nextNode.next);
}
}
return dummyHead.next;
}
}
HIGH.13 买卖股票的最佳时机
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票一次),设计一个算法来计算你所能获取的最大利润。
注意:你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路还是挺清晰的,还是DP思想:
记录【今天之前买入的最小值】
计算【今天之前最小值买入,今天卖出的获利】,也即【今天卖出的最大获利】
比较【每天的最大获利】,取最大值即可
class Solution {
public int maxProfit(int[] prices) {
if(prices.length <= 1)
return 0;
int min = prices[0], max = 0;
for(int i = 1; i < prices.length; i++) {
max = Math.max(max, prices[i] - min);
min = Math.min(min, prices[i]);
}
return max;
}
}
HIGH.14 买卖股票的最佳时机II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
算法题(×) 脑筋急转弯题( √ )
扫描一遍 只要后一天比前一天大 就把这两天的差值加一下
class Solution {
public int maxProfit(int[] prices) {
int ans=0;
for(int i=1;i<=prices.length-1;i++)
{
if(prices[i]>prices[i-1])
{
ans+=prices[i]-prices[i-1];
}
}
return ans;
}
}
HIGH.15 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public int maxSubArray(int[] nums) {
int res = nums[0];
int sum = 0;
for (int num : nums) {
if (sum > 0)
sum += num;
else
sum = num;
res = Math.max(res, sum);
}
return res;
}
}
HIGH.16 最小栈
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
示例:
输入:
[“MinStack”,“push”,“push”,“push”,“getMin”,“pop”,“top”,“getMin”]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
提示:
pop、top 和 getMin 操作总是在 非空栈 上调用。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/min-stack
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class MinStack {
private Node head;
public void push(int x) {
if(head == null)
head = new Node(x, x);
else
head = new Node(x, Math.min(x, head.min), head);
}
public void pop() {
head = head.next;
}
public int top() {
return head.val;
}
public int getMin() {
return head.min;
}
private class Node {
int val;
int min;
Node next;
private Node(int val, int min) {
this(val, min, null);
}
private Node(int val, int min, Node next) {
this.val = val;
this.min = min;
this.next = next;
}
}
}
HIGH.17 LRU 缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该 《Android学习笔记总结+最新移动架构视频+大厂安卓面试真题+项目实战源码讲义》无偿开源 徽信搜索公众号【编程进阶路】 在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1