Python
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.left = [] # 大根堆
self.right = [] # 小根堆
def addNum(self, num: int) -> None:
if len(self.left) == len(self.right):
heapq.heappush(self.left, -heapq.heappushpop(self.right, num))
else:
heapq.heappush(self.right, -heapq.heappushpop(self.left, -num))
def findMedian(self) -> float:
if len(self.left) == len(self.right):
return (self.right[0] - self.left[0]) / 2
else:
return -self.left[0]
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
参考java系列关于堆的梳理。
class MedianFinder {
PriorityQueue<Integer> queue1;
PriorityQueue<Integer> queue2;
/** initialize your data structure here. */
public MedianFinder() {
queue1 = new PriorityQueue<Integer>();
queue2 = new PriorityQueue<Integer>((a, b) -> b - a);
}
public void addNum(int num) {
if (queue1.size() == queue2.size()) {
queue2.offer(num);
queue1.offer(queue2.poll());
} else {
queue1.offer(num);
queue2.offer(queue1.poll());
}
}
public double findMedian() {
return queue1.size() == queue2.size() ? (queue1.peek() + queue2.peek()) / 2.0 : queue1.peek();
}
}
##Solution1:
最笨的方法了。。。
class Solution {
public:
void Insert(int num) {
num_stream.push_back(num);
}
double GetMedian() {
sort(num_stream.begin(),num_stream.end());
int n = num_stream.size();
if(n%2 == 1)
return (double)num_stream[n/2];
else
return (double)(num_stream[n/2] + num_stream[n/2- 1])/2;
}
private:
vector<int> num_stream;
};
##Solution2:
利用最大堆和最小堆实现。
注意在C++的priority_queue中默认的less比较是最大值优先级别最高,top()返回最大值;greater是最小值优先级别最高,top()返回最小值。
class Solution {
priority_queue<int, vector<int>, less<int> > p;
priority_queue<int, vector<int>, greater<int> > q;
public:
void Insert(int num) {
if (p.empty() || num <= p.top()) p.push(num);
else
q.push(num);
if (p.size() == q.size() + 2)
q.push(p.top()), p.pop();
if (p.size() + 1 == q.size())
p.push(q.top()), q.pop();
}
double GetMedian(){
return p.size() == q.size() ? (p.top() + q.top()) / 2.0 : p.top();
}
};