【重点!!!】【单调栈】84.柱状图中最大矩形

文章介绍了两种利用单调栈解决最大矩形面积问题的方法,分别是原版和优化版,时间复杂度均为O(N)。重点讲解了如何使用栈来维护每个高度的左右边界,以找到最大的矩形面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

法1:单调栈[原版]

O(N)+O(N)
必须掌握算法!!!

Python

class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        n = len(heights)
        left_min = [-1] * n
        right_min = [n] * n
        stack = collections.deque()
        for i in range(n):
            while len(stack) > 0 and heights[stack[-1]] >= heights[i]:
                stack.pop()
            left_min[i] = -1 if len(stack) == 0 else stack[-1]
            stack.append(i)
        
        stack.clear()
        for i in range(n-1, -1, -1):
            while len(stack) > 0 and heights[stack[-1]] >= heights[i]:
                stack.pop()
            right_min[i] = n if len(stack) == 0 else stack[-1]
            stack.append(i)
        res = -1
        for i in range(n):
            res = max(res, (right_min[i] - left_min[i] - 1) * heights[i])
        
        return res

Java

class Solution {
    public int largestRectangleArea(int[] heights) {
        int n = heights.length, res = 0;
        int[] leftMin = new int[n], rightMin = new int[n];
        Stack<Integer> stack = new Stack<>();
        for (int i = 0; i < n; ++i) {
            while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
                stack.pop();
            }
            leftMin[i] = stack.isEmpty() ? -1 : stack.peek();
            stack.push(i);
        }
        stack.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
                stack.pop();
            }
            rightMin[i] = stack.isEmpty() ? n : stack.peek();
            stack.push(i);
        }

        for (int i = 0; i < n; ++i) {
            res = Math.max(res, (rightMin[i] - leftMin[i] - 1) * heights[i]);
        }

        return res;
    }
}

法2:单调栈[优化版]

O(N)+O(N)
参考答案
在这里插入图片描述

class Solution {
    public int largestRectangleArea(int[] heights) {
        int n = heights.length, res = 0;
        int[] leftMin = new int[n], rightMin = new int[n];
        Arrays.fill(rightMin, n); // 一定注意这次需要初始化!!!
        Stack<Integer> stack = new Stack<>();
        for (int i = 0; i < n; ++i) {
            while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
                rightMin[stack.peek()] = i;
                stack.pop();
            }
            leftMin[i] = stack.isEmpty() ? -1 : stack.peek();
            stack.push(i);
        }

        for (int i = 0; i < n; ++i) {
            res = Math.max(res, (rightMin[i] - leftMin[i] - 1) * heights[i]);
        }

        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值