这本书介绍了使用Python语言进行概率、统计和机器学习的基础知识和应用。这本书更新到了Python 3.8+版本,并包含大量实用的代码示例和图形可视化,以帮助读者理解和应用这些概念。书中涵盖了从Python的安装与设置,到科学计算库(如Numpy、Scipy、Pandas等)的使用,再到概率与统计理论、机器学习算法及其实现的广泛内容。
书本目录
-
Getting Started with Scientific Python
- Installation and Setup
- Numpy
- Matplotlib
- IPython
- Jupyter Notebook
- Scipy
- Pandas
- Sympy
- Xarray for High Dimensional Dataframes
- Interfacing with Compiled Libraries
- Integrated Development Environments
- Quick Guide to Performance and Parallel Programming
- Other Resources
-
Probability
- Introduction
- Understanding Probability Density
- Random Variables
- Continuous Random Variables
- Transformation of Variables Beyond Calculus
- Independent Random Variables
- Classic Broken Rod Example
- Proje