2019上海网络赛 C [FFT 快速傅里叶变换]

题意:给出三组数组,从每个数组里挑出一个数组成一个三元组(a,b,c),使得这三个数可以组成三角形

题解:由于题目n>1000的组数不超过20, FFT的大小与数量无关与最大值有关

题源:这题是 HDU 4609 的改编https://blog.csdn.net/Adolphrocs/article/details/101555137

/*
 *FFT
 */
#include <bits/stdc++.h>
#define FOR(I,S,T) for (int I=(S);I<=(T);I++)
using namespace std;
const double PI = acos(-1.0);
struct Complex
{
    double r,i;
    Complex(double _r = 0,double _i = 0)
    {
        r = _r; i = _i;
    }
    Complex operator +(const Complex &b)
    {
        return Complex(r+b.r,i+b.i);
    }
    Complex operator -(const Complex &b)
    {
        return Complex(r-b.r,i-b.i);
    }
    Complex operator *(const Complex &b)
    {
        return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
void change(Complex y[], int len){
    int i, j, k;
    for (i = 1, j = len / 2; i < len - 1; i++){
        if(i < j) swap(y[i], y[j]);
        k = len / 2;
        while (j >= k){
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}

void fft(Complex y[], int len, int on){
    change(y,len);
    for (int h = 2; h <= len; h <<= 1){
        Complex wn(cos(-on * 2 * PI / h), sin(-on*2*PI / h));
        for (int j = 0; j < len; j += h){
            Complex w(1, 0);
            for (int k = j; k < j + h / 2; k++){
                Complex u = y[k];
                Complex t = w * y[k + h / 2];
                y[k] = u + t;
                y[k + h / 2] = u - t;
                w = w * wn;
            }
        }
    }
    if (on == -1){
        for (int i = 0; i < len ; i++){
            y[i].r /= len;
        }
    }
}
typedef long long ll;
const int MAXN = 100010;
Complex x1[MAXN * 4];
Complex x2[MAXN * 4];
int a[3][MAXN];
ll num[MAXN * 4], sum[MAXN * 4];

ll gao(int id, int n){
    int id1 = (id + 1) % 3;
    int id2 = (id + 2) % 3;
    int len1 = 0;
    for (int i = 0; i < n; i++){
        num[a[id1][i]]++;
        len1 = max(len1, a[id1][i] + 1);
        len1 = max(len1, a[id2][i] + 1);
    }
    int len = 1;
    while (len < 2 * len1) len <<= 1;
    for (int i = 0; i < len1; i++) x1[i] = Complex(num[i], 0);
    for (int i = len1; i < len; i++) x1[i] = Complex(0,0);
    fft(x1, len, 1);
    for (int i = 0; i < n; i++) num[a[id1][i]]--;
    for (int i = 0; i < n; i++) num[a[id2][i]]++;
    for (int i = 0; i < len1; i++) x2[i] = Complex(num[i], 0);
    for (int i = len1; i < len; i++) x2[i] = Complex(0, 0);

    fft(x2, len, 1);
    for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
    fft(x1, len, -1);
    for (int i = 0; i < len; i++) num[i] = (ll)(x1[i].r + 0.5);
    sum[0] = 0;
    for (int i = 1; i <= 2 * len1; i++) sum[i] = sum[i-1] + num[i];
    for (int i = 0; i < len; i++) num[i]= 0;
    ll ans = 0;
    for (int i = 0; i < n; i++){
        ans += sum[2 * len1] - sum[a[id][i] - 1];
    }
    return ans;
}

struct Node{
    int v, id;
}node[MAXN * 3];
bool cmp(Node A, Node B){
    return A.v < B.v;
}

ll gao_fft(int n){
    ll ans = gao(0, n) + gao(1, n) + gao(2, n);
    for (int i = 0; i < n; i++){
        node[i].v = a[0][i];
        node[i].id = 0;
    }
    for (int i = n; i < 2 * n; i++){
        node[i].v = a[1][i - n];
        node[i].id = 1;
    }
    for (int i = 2 * n; i < 3 * n; i++){
        node[i].v = a[2][i - 2 * n];
        node[i].id = 2;
    }
    sort(node, node + 3 * n, cmp);
    int cnt[3] = {0};
    for (int i = 0; i < 3 * n; i++){
        int id = node[i].id;
        int id1 = (id + 1) % 3;
        int id2 = (id + 2) % 3;
        ans -= (ll)(n - cnt[id1])*cnt[id2];
        ans -= (ll)(n - cnt[id2])*cnt[id1];
        ans -= (ll)(n - cnt[id1]) * (n - cnt[id2]);
        cnt[id]++;
    }
    return ans;
}

ll gao_n2(int n ){
    sort(a[0], a[0] + n);
    sort(a[1], a[1] + n);
    sort(a[2], a[2] + n);
    for (int i = 0; i < n; i++){
        node[i].v = a[0][i];
        node[i].id = 0;
    }
    for (int i = n; i < 2 * n; i++){
        node[i].v = a[1][i - n];
        node[i].id = 1;
    }
    for (int i = 2 * n; i < 3 * n; i++){
        node[i].v = a[2][i - 2 * n];
        node[i].id = 2;
    }
    sort(node, node + 3 * n, cmp);
    int cnt[3] = {0};
    ll ans = 0;
    for (int i = 0; i < 3 * n; i++){
        int id = node[i].id;
        int id1 = (id + 1) % 3;
        int id2 = (id + 2) % 3;
        int tmp = cnt[id2];
        for (int j = 0; j < cnt[id1]; j++){
            while (tmp > 0 && a[id1][j] + a[id2][tmp - 1] >= node[i].v) tmp--;
            ans += cnt[id2] - tmp;
        }
        cnt[id]++;
    }
    return ans;
}

int main()
{
    int T, n;
    scanf("%d", &T);
    for (int cas = 1; cas <= T; cas++){
        scanf("%d", &n);
        for (int i = 0; i < n; i++) scanf("%d", &a[0][i]);
        for (int i = 0; i < n; i++) scanf("%d", &a[1][i]);
        for (int i = 0; i < n; i++) scanf("%d", &a[2][i]);

        ll ans = 0;
        if (n <= 2000) ans = gao_n2(n);
        else ans = gao_fft(n);
        printf("Case #%d: %lld\n", cas, ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值