题意:给出三组数组,从每个数组里挑出一个数组成一个三元组(a,b,c),使得这三个数可以组成三角形
题解:由于题目n>1000的组数不超过20, FFT的大小与数量无关与最大值有关
题源:这题是 HDU 4609 的改编https://blog.csdn.net/Adolphrocs/article/details/101555137
/*
*FFT
*/
#include <bits/stdc++.h>
#define FOR(I,S,T) for (int I=(S);I<=(T);I++)
using namespace std;
const double PI = acos(-1.0);
struct Complex
{
double r,i;
Complex(double _r = 0,double _i = 0)
{
r = _r; i = _i;
}
Complex operator +(const Complex &b)
{
return Complex(r+b.r,i+b.i);
}
Complex operator -(const Complex &b)
{
return Complex(r-b.r,i-b.i);
}
Complex operator *(const Complex &b)
{
return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
void change(Complex y[], int len){
int i, j, k;
for (i = 1, j = len / 2; i < len - 1; i++){
if(i < j) swap(y[i], y[j]);
k = len / 2;
while (j >= k){
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
void fft(Complex y[], int len, int on){
change(y,len);
for (int h = 2; h <= len; h <<= 1){
Complex wn(cos(-on * 2 * PI / h), sin(-on*2*PI / h));
for (int j = 0; j < len; j += h){
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++){
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1){
for (int i = 0; i < len ; i++){
y[i].r /= len;
}
}
}
typedef long long ll;
const int MAXN = 100010;
Complex x1[MAXN * 4];
Complex x2[MAXN * 4];
int a[3][MAXN];
ll num[MAXN * 4], sum[MAXN * 4];
ll gao(int id, int n){
int id1 = (id + 1) % 3;
int id2 = (id + 2) % 3;
int len1 = 0;
for (int i = 0; i < n; i++){
num[a[id1][i]]++;
len1 = max(len1, a[id1][i] + 1);
len1 = max(len1, a[id2][i] + 1);
}
int len = 1;
while (len < 2 * len1) len <<= 1;
for (int i = 0; i < len1; i++) x1[i] = Complex(num[i], 0);
for (int i = len1; i < len; i++) x1[i] = Complex(0,0);
fft(x1, len, 1);
for (int i = 0; i < n; i++) num[a[id1][i]]--;
for (int i = 0; i < n; i++) num[a[id2][i]]++;
for (int i = 0; i < len1; i++) x2[i] = Complex(num[i], 0);
for (int i = len1; i < len; i++) x2[i] = Complex(0, 0);
fft(x2, len, 1);
for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1);
for (int i = 0; i < len; i++) num[i] = (ll)(x1[i].r + 0.5);
sum[0] = 0;
for (int i = 1; i <= 2 * len1; i++) sum[i] = sum[i-1] + num[i];
for (int i = 0; i < len; i++) num[i]= 0;
ll ans = 0;
for (int i = 0; i < n; i++){
ans += sum[2 * len1] - sum[a[id][i] - 1];
}
return ans;
}
struct Node{
int v, id;
}node[MAXN * 3];
bool cmp(Node A, Node B){
return A.v < B.v;
}
ll gao_fft(int n){
ll ans = gao(0, n) + gao(1, n) + gao(2, n);
for (int i = 0; i < n; i++){
node[i].v = a[0][i];
node[i].id = 0;
}
for (int i = n; i < 2 * n; i++){
node[i].v = a[1][i - n];
node[i].id = 1;
}
for (int i = 2 * n; i < 3 * n; i++){
node[i].v = a[2][i - 2 * n];
node[i].id = 2;
}
sort(node, node + 3 * n, cmp);
int cnt[3] = {0};
for (int i = 0; i < 3 * n; i++){
int id = node[i].id;
int id1 = (id + 1) % 3;
int id2 = (id + 2) % 3;
ans -= (ll)(n - cnt[id1])*cnt[id2];
ans -= (ll)(n - cnt[id2])*cnt[id1];
ans -= (ll)(n - cnt[id1]) * (n - cnt[id2]);
cnt[id]++;
}
return ans;
}
ll gao_n2(int n ){
sort(a[0], a[0] + n);
sort(a[1], a[1] + n);
sort(a[2], a[2] + n);
for (int i = 0; i < n; i++){
node[i].v = a[0][i];
node[i].id = 0;
}
for (int i = n; i < 2 * n; i++){
node[i].v = a[1][i - n];
node[i].id = 1;
}
for (int i = 2 * n; i < 3 * n; i++){
node[i].v = a[2][i - 2 * n];
node[i].id = 2;
}
sort(node, node + 3 * n, cmp);
int cnt[3] = {0};
ll ans = 0;
for (int i = 0; i < 3 * n; i++){
int id = node[i].id;
int id1 = (id + 1) % 3;
int id2 = (id + 2) % 3;
int tmp = cnt[id2];
for (int j = 0; j < cnt[id1]; j++){
while (tmp > 0 && a[id1][j] + a[id2][tmp - 1] >= node[i].v) tmp--;
ans += cnt[id2] - tmp;
}
cnt[id]++;
}
return ans;
}
int main()
{
int T, n;
scanf("%d", &T);
for (int cas = 1; cas <= T; cas++){
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[0][i]);
for (int i = 0; i < n; i++) scanf("%d", &a[1][i]);
for (int i = 0; i < n; i++) scanf("%d", &a[2][i]);
ll ans = 0;
if (n <= 2000) ans = gao_n2(n);
else ans = gao_fft(n);
printf("Case #%d: %lld\n", cas, ans);
}
return 0;
}