tf.reduce_mean
函数原型:
tf.math.reduce_mean(
input_tensor,
axis=None,
keepdims=None,
name=None,
reduction_indices=None,
keep_dims=None
)
参数:
- input_tensor:需要求平均值的张量
- axis:指定求平均值的轴
- keep_dims:是否保存input_tensor的维度不变。
例子:
import tensorflow as tf
X = tf.constant([[[1., 1, 1],[2., 2, 2]],
[[3, 3, 3],[4, 4, 4]]])
y_1= tf.reduce_mean(X)
y_2= tf.reduce_mean(X,1)
y_3= tf.reduce_mean(X,1,keep_dims=True)
y_4= tf.reduce_mean(X,[1,0])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
c_1,c_2,c_3,c_4=sess.run([y_1,y_2,y_3,y_4])
print(c_1)
print(c_2)
print(c_3)
print(c_4)
输出:
2.5
=========================
[[1.5 1.5 1.5]
[3.5 3.5 3.5]]
=========================
[[[1.5 1.5 1.5]]
[[3.5 3.5 3.5]]]
==========================
[2.5 2.5 2.5]
说明:
- 先按照axis指定的维度,将这个维度里面的每个元素相加,再除以元素个数,如果keep_dims不指定我们再去掉该维度。