超勇阿正 2024-08-29 17:37 采纳率: 100%
浏览 8
已结题

关于#python#的问题,请各位专家解答!

img

img


这是站内一位Dg的爱心代码动图末尾部分,但是运行过程报错,这个怎么解决呢?

  • 写回答

1条回答 默认 最新

  • a5156520 2024-08-29 21:29
    关注

    去除代码中的多余字符,然后使用提供的代码在python脚本目录下新建文件“settings.yaml”,然后再安装下库pyyaml即可。

    测试如下:

    参考链接:




    heart.py:

    from math import cos, pi
    import numpy as np
    import cv2
    import os, glob 
     
    class HeartSignal:
        def __init__(self, curve="heart", title="Love U", frame_num=20, seed_points_num=2000, seed_num=None, highlight_rate=0.3,
                     background_img_dir="", set_bg_imgs=False, bg_img_scale=0.2, bg_weight=0.3, curve_weight=0.7, frame_width=1080, frame_height=960, scale=10.1,
                     base_color=None, highlight_points_color_1=None, highlight_points_color_2=None, wait=100, n_star=5, m_star=2):
            super().__init__()
            self.curve = curve
            self.title = title
            self.highlight_points_color_2 = highlight_points_color_2
            self.highlight_points_color_1 = highlight_points_color_1
            self.highlight_rate = highlight_rate
            self.base_color = base_color
            self.n_star = n_star
            self.m_star = m_star
            self.curve_weight = curve_weight
            img_paths = glob.glob(background_img_dir + "/*")
            self.bg_imgs = []
            self.set_bg_imgs = set_bg_imgs
            self.bg_weight = bg_weight
            if os.path.exists(background_img_dir) and len(img_paths) > 0 and set_bg_imgs:
                for img_path in img_paths:
                    img = cv2.imread(img_path)
                    self.bg_imgs.append(img)
                first_bg = self.bg_imgs[0]
                width = int(first_bg.shape[1] * bg_img_scale)
                height = int(first_bg.shape[0] * bg_img_scale)
                first_bg = cv2.resize(first_bg, (width, height), interpolation=cv2.INTER_AREA)
     
                # 对齐图片,自动裁切中间
                new_bg_imgs = [first_bg, ]
                for img in self.bg_imgs[1:]:
                    width_close = abs(first_bg.shape[1] - img.shape[1]) < abs(first_bg.shape[0] - img.shape[0])
                    if width_close:
                        # resize
                        height = int(first_bg.shape[1] / img.shape[1] * img.shape[0])
                        width = first_bg.shape[1]
                        img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
                        # crop and fill
                        if img.shape[0] > first_bg.shape[0]:
                            crop_num = img.shape[0] - first_bg.shape[0]
                            crop_top = crop_num 
                            crop_bottom = crop_num - crop_top
                            img = np.delete(img, range(crop_top), axis=0)
                            img = np.delete(img, range(img.shape[0] - crop_bottom, img.shape[0]), axis=0)
                        elif img.shape[0] < first_bg.shape[0]:
                            fill_num = first_bg.shape[0] - img.shape[0]
                            fill_top = fill_num
                            fill_bottom = fill_num - fill_top
                            img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=0)
                    else:
                        width = int(first_bg.shape[0] / img.shape[0] * img.shape[1])
                        height = first_bg.shape[0]
                        img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
                        # crop and fill
                        if img.shape[1] > first_bg.shape[1]:
                            crop_num = img.shape[1] - first_bg.shape[1]
                            crop_top = crop_num 
                            crop_bottom = crop_num - crop_top
                            img = np.delete(img, range(crop_top), axis=1)
                            img = np.delete(img, range(img.shape[1] - crop_bottom, img.shape[1]), axis=1)
                        elif img.shape[1] < first_bg.shape[1]:
                            fill_num = first_bg.shape[1] - img.shape[1]
                            fill_top = fill_num // 2
                            fill_bottom = fill_num - fill_top
                            img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=1)
                    new_bg_imgs.append(img)
                self.bg_imgs = new_bg_imgs
                assert all(img.shape[0] == first_bg.shape[0] and img.shape[1] == first_bg.shape[1] for img in self.bg_imgs), "背景图片宽和高不一致"
                self.frame_width = self.bg_imgs[0].shape[1]
                self.frame_height = self.bg_imgs[0].shape[0]
            else:
                self.frame_width = frame_width  # 窗口宽度
                self.frame_height = frame_height  # 窗口高度
            self.center_x = self.frame_width / 2
            self.center_y = self.frame_height / 2
            self.main_curve_width = -1
            self.main_curve_height = -1
     
            self.frame_points = []  # 每帧动态点坐标
            self.frame_num = frame_num  # 帧数
            self.seed_num = seed_num  # 伪随机种子,设置以后除光晕外粒子相对位置不动(减少内部闪烁感)
            self.seed_points_num = seed_points_num  # 主图粒子数
            self.scale = scale  # 缩放比例
            self.wait = wait
     
        def curve_function(self, curve):
            curve_dict = {
                "heart": self.heart_function,
                "butterfly": self.butterfly_function,
                "star": self.star_function,
            }
            return curve_dict[curve]
     
        def heart_function(self, t, frame_idx=0, scale=5.20):
            """
            图形方程
            :param frame_idx: 帧的索引,根据帧数变换心形
            :param scale: 放大比例
            :param t: 参数
            :return: 坐标
            """
            trans = 3 - (1 + self.periodic_func(frame_idx, self.frame_num)) * 0.5  # 改变心形饱满度度的参数
     
            x = 15 * (np.sin(t) ** 3)
            t = np.where((pi < t) & (t < 2 * pi), 2 * pi - t, t)  # 翻转x > 0部分的图形到3、4象限
            y = -(14 * np.cos(t) - 4 * np.cos(2 * t) - 2 * np.cos(3 * t) - np.cos(trans * t))
     
            ign_area = 0.15
            center_ids = np.where((x > -ign_area) & (x < ign_area))
            if np.random.random() > 0.32:
                x, y = np.delete(x, center_ids), np.delete(y, center_ids)  # 删除稠密部分的扩散,为了美观
     
            # 放大
            x *= scale
            y *= scale
     
            # 移到画布中央
            x += self.center_x
            y += self.center_y
     
            # 原心形方程
            # x = 15 * (sin(t) ** 3)
            # y = -(14 * cos(t) - 4 * cos(2 * t) - 2 * cos(3 * t) - cos(3 * t))
            return x.astype(int), y.astype(int)
     
        def butterfly_function(self, t, frame_idx=0, scale=5.2):
            """
            图形函数
            :param frame_idx:
            :param scale: 放大比例
            :param t: 参数
            :return: 坐标
            """
            # 基础函数
            # t = t * pi
            p = np.exp(np.sin(t)) - 2.5 * np.cos(4 * t) + np.sin(t) ** 5
            x = 5 * p * np.cos(t)
            y = - 5 * p * np.sin(t)
     
            # 放大
            x *= scale
            y *= scale
     
            # 移到画布中央
            x += self.center_x
            y += self.center_y
     
            return x.astype(int), y.astype(int)
     
        def star_function(self, t, frame_idx=0, scale=5.2):
            n = self.n_star / self.m_star
            p = np.cos(pi / n) / np.cos(pi / n - (t % (2 * pi / n)))
     
            x = 15 * p * np.cos(t)
            y = 15 * p * np.sin(t)
     
            # 放大
            x *= scale
            y *= scale
     
            # 移到画布中央
            x += self.center_x
            y += self.center_y
     
            return x.astype(int), y.astype(int)
     
        def shrink(self, x, y, ratio, offset=1, p=0.5, dist_func="uniform"):
            """
            带随机位移的抖动
            :param x: 原x
            :param y: 原y
            :param ratio: 缩放比例
            :param p:
            :param offset:
            :return: 转换后的x,y坐标
            """
            x_ = (x - self.center_x)
            y_ = (y - self.center_y)
            force = 1 / ((x_ ** 2 + y_ ** 2) ** p + 1e-30)
     
            dx = ratio * force * x_
            dy = ratio * force * y_
     
            def d_offset(x):
                if dist_func == "uniform":
                    return x + np.random.uniform(-offset, offset, size=x.shape)
                elif dist_func == "norm":
                    return x + offset * np.random.normal(0, 1, size=x.shape)
     
            dx, dy = d_offset(dx), d_offset(dy)
     
            return x - dx, y - dy
     
        def scatter(self, x, y, alpha=0.75, beta=0.15):
            """
            随机内部扩散的坐标变换
            :param alpha: 扩散因子 - 松散
            :param x: 原x
            :param y: 原y
            :param beta: 扩散因子 - 距离
            :return: x,y 新坐标
            """
     
            ratio_x = - beta * np.log(np.random.random(x.shape) * alpha)
            ratio_y = - beta * np.log(np.random.random(y.shape) * alpha)
            dx = ratio_x * (x - self.center_x)
            dy = ratio_y * (y - self.center_y)
     
            return x - dx, y - dy
     
        def periodic_func(self, x, x_num):
            """
            跳动周期曲线
            :param p: 参数
            :return: y
            """
     
            # 可以尝试换其他的动态函数,达到更有力量的效果(贝塞尔?)
            def ori_func(t):
                return cos(t)
     
            func_period = 2 * pi
            return ori_func(x / x_num * func_period)
     
        def gen_points(self, points_num, frame_idx, shape_func):
            # 用周期函数计算得到一个因子,用到所有组成部件上,使得各个部分的变化周期一致
            cy = self.periodic_func(frame_idx, self.frame_num)
            ratio = 10 * cy
     
            # 图形
            period = 2 * pi * self.m_star if self.curve == "star" else 2 * pi
            seed_points = np.linspace(0, period, points_num)
            seed_x, seed_y = shape_func(seed_points, frame_idx, scale=self.scale)
            x, y = self.shrink(seed_x, seed_y, ratio, offset=2)
            curve_width, curve_height = int(x.max() - x.min()), int(y.max() - y.min())
            self.main_curve_width = max(self.main_curve_width, curve_width)
            self.main_curve_height = max(self.main_curve_height, curve_height)
            point_size = np.random.choice([1, 2], x.shape, replace=True, p=[0.5, 0.5])
            tag = np.ones_like(x)
     
            def delete_points(x_, y_, ign_area, ign_prop):
                ign_area = ign_area
                center_ids = np.where((x_ > self.center_x - ign_area) & (x_ < self.center_x + ign_area))
                center_ids = center_ids[0]
                np.random.shuffle(center_ids)
                del_num = round(len(center_ids) * ign_prop)
                del_ids = center_ids[:del_num]
                x_, y_ = np.delete(x_, del_ids), np.delete(y_, del_ids)  # 删除稠密部分的扩散,为了美观
                return x_, y_
     
            # 多层次扩散
            for idx, beta in enumerate(np.linspace(0.05, 0.2, 6)):
                alpha = 1 - beta
                x_, y_ = self.scatter(seed_x, seed_y, alpha, beta)
                x_, y_ = self.shrink(x_, y_, ratio, offset=round(beta * 15))
                x = np.concatenate((x, x_), 0)
                y = np.concatenate((y, y_), 0)
                p_size = np.random.choice([1, 2], x_.shape, replace=True, p=[0.55 + beta, 0.45 - beta])
                point_size = np.concatenate((point_size, p_size), 0)
                tag_ = np.ones_like(x_) * 2
                tag = np.concatenate((tag, tag_), 0)
     
            # 光晕
            halo_ratio = int(7 + 2 * abs(cy))  # 收缩比例随周期变化
     
            # 基础光晕
            x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9)
            x_1, y_1 = self.shrink(x_, y_, halo_ratio, offset=18, dist_func="uniform")
            x_1, y_1 = delete_points(x_1, y_1, 20, 0.5)
            x = np.concatenate((x, x_1), 0)
            y = np.concatenate((y, y_1), 0)
     
            # 炸裂感光晕
            halo_number = int(points_num * 0.6 + points_num * abs(cy))  # 光晕点数也周期变化
            seed_points = np.random.uniform(0, 2 * pi, halo_number)
            x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9)
            x_2, y_2 = self.shrink(x_, y_, halo_ratio, offset=int(6 + 15 * abs(cy)), dist_func="norm")
            x_2, y_2 = delete_points(x_2, y_2, 20, 0.5)
            x = np.concatenate((x, x_2), 0)
            y = np.concatenate((y, y_2), 0)
     
            # 膨胀光晕
            x_3, y_3 = shape_func(np.linspace(0, 2 * pi, int(points_num * .4)),
                                                 frame_idx, scale=self.scale + 0.2)
            x_3, y_3 = self.shrink(x_3, y_3, ratio * 2, offset=6)
            x = np.concatenate((x, x_3), 0)
            y = np.concatenate((y, y_3), 0)
     
            halo_len = x_1.shape[0] + x_2.shape[0] + x_3.shape[0]
            p_size = np.random.choice([1, 2, 3], halo_len, replace=True, p=[0.7, 0.2, 0.1])
            point_size = np.concatenate((point_size, p_size), 0)
            tag_ = np.ones(halo_len) * 2 * 3
            tag = np.concatenate((tag, tag_), 0)
     
            x_y = np.around(np.stack([x, y], axis=1), 0)
            x, y = x_y[:, 0], x_y[:, 1]
            return x, y, point_size, tag
     
        def get_frames(self, shape_func):
            for frame_idx in range(self.frame_num):
                np.random.seed(self.seed_num)
                self.frame_points.append(self.gen_points(self.seed_points_num, frame_idx, shape_func))
     
            frames = []
     
            def add_points(frame, x, y, size, tag):
                highlight1 = np.array(self.highlight_points_color_1, dtype='uint8')
                highlight2 = np.array(self.highlight_points_color_2, dtype='uint8')
                base_col = np.array(self.base_color, dtype='uint8')
     
                x, y = x.astype(int), y.astype(int)
                frame[y, x] = base_col
     
                size_2 = np.int64(size == 2)
                frame[y, x + size_2] = base_col
                frame[y + size_2, x] = base_col
     
                size_3 = np.int64(size == 3)
                frame[y + size_3, x] = base_col
                frame[y - size_3, x] = base_col
                frame[y, x + size_3] = base_col
                frame[y, x - size_3] = base_col
                frame[y + size_3, x + size_3] = base_col
                frame[y - size_3, x - size_3] = base_col
                # frame[y - size_3, x + size_3] = color
                # frame[y + size_3, x - size_3] = color
     
                # 高光
                random_sample = np.random.choice([1, 0], size=tag.shape, p=[self.highlight_rate, 1 - self.highlight_rate])
     
                # tag2_size1 = np.int64((tag <= 2) & (size == 1) & (random_sample == 1))
                # frame[y * tag2_size1, x * tag2_size1] = highlight2
     
                tag2_size2 = np.int64((tag <= 2) & (size == 2) & (random_sample == 1))
                frame[y * tag2_size2, x * tag2_size2] = highlight1
                # frame[y * tag2_size2, (x + 1) * tag2_size2] = highlight2
                # frame[(y + 1) * tag2_size2, x * tag2_size2] = highlight2
                frame[(y + 1) * tag2_size2, (x + 1) * tag2_size2] = highlight2
     
            for x, y, size, tag in self.frame_points:
                frame = np.zeros([self.frame_height, self.frame_width, 3], dtype="uint8")
                add_points(frame, x, y, size, tag)
                frames.append(frame)
     
            return frames
     
        def draw(self, times=10):
            frames = self.get_frames(self.curve_function(self.curve))
     
            for i in range(times):
                for frame in frames:
                    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                    if len(self.bg_imgs) > 0 and self.set_bg_imgs:
                        frame = cv2.addWeighted(self.bg_imgs[i % len(self.bg_imgs)], self.bg_weight, frame, self.curve_weight, 0)
                    cv2.imshow(self.title, frame)
                    cv2.waitKey(self.wait)
     
    # https://blog.csdn.net/dhyuan_88/article/details/134174250 
    if __name__ == '__main__':
        # https://zhuanlan.zhihu.com/p/703801984
        # 如果电脑中没有安装库pyyaml,则需要先安装它
        import yaml
        settings = yaml.load(open("./settings.yaml", "r", encoding="utf-8"), Loader=yaml.FullLoader)
        if settings["wait"] == -1:
            settings["wait"] = int(settings["period_time"] / settings["frame_num"])
        del settings["period_time"]
        times = settings["times"]
        del settings["times"]
        heart = HeartSignal(seed_num=5201314, **settings)
        heart.draw(times)
    
    
    
    
    

    settings.yaml:(和代码放在同一个目录下)

    # 这下面的全部复制,然后粘贴到文件"settings.yaml"中,文件"settings.yaml"需要和代码在同一个目录下
    # 颜色:RGB三原色数值 0~255
    # 设置高光时,尽量选择接近主色的颜色,看起来会和谐一点
     
    # 视频里的蓝色调
    #base_color: # 主色  默认玫瑰粉
    #  - 30
    #  - 100
    #  - 100
    #highlight_points_color_1: # 高光粒子色1 默认淡紫色
    #  - 150
    #  - 120
    #  - 220
    #highlight_points_color_2: # 高光粒子色2 默认淡粉色
    #  - 128
    #  - 140
    #  - 140
     
    base_color: # 主色  默认玫瑰粉
      - 228
      - 100
      - 100
    highlight_points_color_1: # 高光粒子色1 默认淡紫色
      - 180
      - 87
      - 200
    highlight_points_color_2: # 高光粒子色2 默认淡粉色
      - 228
      - 140
      - 140
     
    period_time: 1000 * 2  # 周期时间,默认1.5s一个周期
    times: 5 # 播放周期数,一个周期跳动1次
    frame_num: 24  # 一个周期的生成帧数
    wait: 60  # 每一帧停留时间, 设置太短可能造成闪屏,设置 -1 自动设置为 period_time / frame_num
    seed_points_num: 2000  # 构成主图的种子粒子数,总粒子数是这个的8倍左右(包括散点和光晕)
    highlight_rate: 0.2 # 高光粒子的比例
    frame_width: 720  # 窗口宽度,单位像素,设置背景图片后失效
    frame_height: 640  # 窗口高度,单位像素,设置背景图片后失效
    scale: 9.1  # 主图缩放比例
    curve: "butterfly"  # 图案类型:heart, butterfly, star
    n_star: 7 # n-角型/星,如果curve设置成star才会生效,五角星:n-star:5, m-star:2
    m_star: 3 # curve设置成star才会生效,n-角形 m-star都是1,n-角星 m-star大于1,比如 七角星:n-star:7, m-star:2 或 3
    title: "Love Li Xun"  # 仅支持字母,中文乱码
    background_img_dir: "src/center_imgs" # 这个目录放置背景图片,建议像素在400 X 400以上,否则可能报错,如果图片实在小,可以调整上面scale把爱心缩小
    set_bg_imgs: false # true或false,设置false用默认黑背景
    bg_img_scale: 0.6 # 0 - 1,背景图片缩放比例
    bg_weight: 0.4 # 0 - 1,背景图片权重,可看做透明度吧
    curve_weight: 1 # 同上
     
    # ======================== 推荐参数: 直接复制数值替换上面对应参数 ==================================
    # 蝴蝶,报错很可能是蝴蝶缩放大小超出窗口宽和高
    # curve: "butterfly"
    # frame_width: 800
    # frame_height: 720
    # scale: 60
    # base_color: [100, 100, 228]
    # highlight_points_color_1: [180, 87, 200]
    # highlight_points_color_2: [228, 140, 140]
    

    img

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论 编辑记录

报告相同问题?

问题事件

  • 系统已结题 9月7日
  • 已采纳回答 8月30日
  • 创建了问题 8月29日