无涯233 2024-02-26 11:36 采纳率: 33.3%
浏览 5

我想在边缘终端上部署一套用python写的图像分割,边缘终端的配置应该怎么配

我想在边缘终端上部署一套用python写的图像分割,用的unet,要同时处理20张图片,边缘终端的配置应该怎么配?有没有推荐的产品,求解答

  • 写回答

4条回答 默认 最新

  • 码农阿豪@新空间 Java领域优质创作者 2024-02-26 11:36
    关注
    让阿豪来帮你解答,本回答参考chatgpt3.5编写提供,如需一对一服务私聊我哦
    一、边缘终端配置方案:
    1. CPU:至少i5或者相当于i5的处理器(例如:Intel Xeon E3-1230 v5)
    2. 内存:至少8GB
    3. 硬盘:至少200GB,建议使用SSD
    4. 网络:至少100Mbps的网络带宽 二、推荐产品:
    5. Dell Optiplex 3080 Micro CPU:Intel Core i5-10500T 内存:8GB DDR4 硬盘:256GB SSD 网络:10/100/1000Mbps
    6. HP Elite Slice G2 CPU:Intel Core i5-7500T 内存:8GB DDR4 硬盘:256GB SSD 网络:10/100/1000Mbps
    7. Lenovo ThinkCentre M90n CPU:Intel Core i5-10210U 内存:8GB DDR4 硬盘:256GB SSD 网络:10/100/1000Mbps 三、代码实现: 由于没有给出具体的代码实现要求,这里只提供一个简单的使用Python和PyTorch框架实现图像分割的示例:
    import torch
    import torch.nn as nn
    class UNet(nn.Module):
        def __init__(self, in_channels=3, out_channels=1, init_features=64):
            super(UNet, self).__init__()
            
            self.encoder1 = UNet._block(in_channels, init_features, name="enc1")
            self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.encoder2 = UNet._block(init_features, init_features * 2, name="enc2")
            self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.encoder3 = UNet._block(init_features * 2, init_features * 4, name="enc3")
            self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.encoder4 = UNet._block(init_features * 4, init_features * 8, name="enc4")
            self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
            
            self.bottleneck = UNet._block(init_features * 8, init_features * 16, name="bottleneck")
            
            self.upconv4 = nn.ConvTranspose2d(init_features * 16, init_features * 8, kernel_size=2, stride=2)
            self.decoder4 = UNet._block((init_features * 8) * 2, init_features * 8, name="dec4")
            self.upconv3 = nn.ConvTranspose2d(init_features * 8, init_features * 4, kernel_size=2, stride=2)
            self.decoder3 = UNet._block((init_features * 4) * 2, init_features * 4, name="dec3")
            self.upconv2 = nn.ConvTranspose2d(init_features * 4, init_features * 2, kernel_size=2, stride=2)
            self.decoder2 = UNet._block((init_features * 2) * 2, init_features * 2, name="dec2")
            self.upconv1 = nn.ConvTranspose2d(init_features * 2, init_features, kernel_size=2, stride=2)
            self.decoder1 = UNet._block(init_features * 2, init_features, name="dec1")
            
            self.out = nn.Conv2d(init_features, out_channels, kernel_size=1)
            
        def forward(self, x):
            enc1 = self.encoder1(x)
            enc2 = self.encoder2(self.pool1(enc1))
            enc3 = self.encoder3(self.pool2(enc2))
            enc4 = self.encoder4(self.pool3(enc3))
            
            bottleneck = self.bottleneck(self.pool4(enc4))
            
            dec4 = self.upconv4(bottleneck)
            dec4 = torch.cat((enc4, dec4), dim=1)
            dec4 = self.decoder4(dec4)
            dec3 = self.upconv3(dec4)
            dec3 = torch.cat((enc3, dec3), dim=1)
            dec3 = self.decoder3(dec3)
            dec2 = self.upconv2(dec3)
            dec2 = torch.cat((enc2, dec2), dim=1)
            dec2 = self.decoder2(dec2)
            dec1 = self.upconv1(dec2)
            dec1 = torch.cat((enc1, dec1), dim=1)
            dec1 = self.decoder1(dec1)
            
            out = self.out(dec1)
            
            return out
            
        @staticmethod
        def _block(in_channels, features, name):
            return nn.Sequential(
                nn.Conv2d(in_channels, features, 3, padding=1),
                nn.BatchNorm2d(features),
                nn.ReLU(),
                nn.Conv2d(features, features, 3, padding=1),
                nn.BatchNorm2d(features),
                nn.ReLU()
            )
    

    以上代码实现了UNet模型,可以用于图像分割任务。 对于要处理的20张图片,可以使用Python的多线程或多进程来同时处理。

    评论

报告相同问题?

问题事件

  • 专家修改了标签 2月26日
  • 创建了问题 2月26日