我想在边缘终端上部署一套用python写的图像分割,用的unet,要同时处理20张图片,边缘终端的配置应该怎么配?有没有推荐的产品,求解答
4条回答 默认 最新
关注
让阿豪来帮你解答,本回答参考chatgpt3.5编写提供,如需一对一服务私聊我哦
一、边缘终端配置方案:- CPU:至少i5或者相当于i5的处理器(例如:Intel Xeon E3-1230 v5)
- 内存:至少8GB
- 硬盘:至少200GB,建议使用SSD
- 网络:至少100Mbps的网络带宽 二、推荐产品:
- Dell Optiplex 3080 Micro CPU:Intel Core i5-10500T 内存:8GB DDR4 硬盘:256GB SSD 网络:10/100/1000Mbps
- HP Elite Slice G2 CPU:Intel Core i5-7500T 内存:8GB DDR4 硬盘:256GB SSD 网络:10/100/1000Mbps
- Lenovo ThinkCentre M90n CPU:Intel Core i5-10210U 内存:8GB DDR4 硬盘:256GB SSD 网络:10/100/1000Mbps 三、代码实现: 由于没有给出具体的代码实现要求,这里只提供一个简单的使用Python和PyTorch框架实现图像分割的示例:
import torch import torch.nn as nn class UNet(nn.Module): def __init__(self, in_channels=3, out_channels=1, init_features=64): super(UNet, self).__init__() self.encoder1 = UNet._block(in_channels, init_features, name="enc1") self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder2 = UNet._block(init_features, init_features * 2, name="enc2") self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder3 = UNet._block(init_features * 2, init_features * 4, name="enc3") self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder4 = UNet._block(init_features * 4, init_features * 8, name="enc4") self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.bottleneck = UNet._block(init_features * 8, init_features * 16, name="bottleneck") self.upconv4 = nn.ConvTranspose2d(init_features * 16, init_features * 8, kernel_size=2, stride=2) self.decoder4 = UNet._block((init_features * 8) * 2, init_features * 8, name="dec4") self.upconv3 = nn.ConvTranspose2d(init_features * 8, init_features * 4, kernel_size=2, stride=2) self.decoder3 = UNet._block((init_features * 4) * 2, init_features * 4, name="dec3") self.upconv2 = nn.ConvTranspose2d(init_features * 4, init_features * 2, kernel_size=2, stride=2) self.decoder2 = UNet._block((init_features * 2) * 2, init_features * 2, name="dec2") self.upconv1 = nn.ConvTranspose2d(init_features * 2, init_features, kernel_size=2, stride=2) self.decoder1 = UNet._block(init_features * 2, init_features, name="dec1") self.out = nn.Conv2d(init_features, out_channels, kernel_size=1) def forward(self, x): enc1 = self.encoder1(x) enc2 = self.encoder2(self.pool1(enc1)) enc3 = self.encoder3(self.pool2(enc2)) enc4 = self.encoder4(self.pool3(enc3)) bottleneck = self.bottleneck(self.pool4(enc4)) dec4 = self.upconv4(bottleneck) dec4 = torch.cat((enc4, dec4), dim=1) dec4 = self.decoder4(dec4) dec3 = self.upconv3(dec4) dec3 = torch.cat((enc3, dec3), dim=1) dec3 = self.decoder3(dec3) dec2 = self.upconv2(dec3) dec2 = torch.cat((enc2, dec2), dim=1) dec2 = self.decoder2(dec2) dec1 = self.upconv1(dec2) dec1 = torch.cat((enc1, dec1), dim=1) dec1 = self.decoder1(dec1) out = self.out(dec1) return out @staticmethod def _block(in_channels, features, name): return nn.Sequential( nn.Conv2d(in_channels, features, 3, padding=1), nn.BatchNorm2d(features), nn.ReLU(), nn.Conv2d(features, features, 3, padding=1), nn.BatchNorm2d(features), nn.ReLU() )
以上代码实现了UNet模型,可以用于图像分割任务。 对于要处理的20张图片,可以使用Python的多线程或多进程来同时处理。
解决 无用评论 打赏 举报