CÃlimos 2023-10-19 16:19 采纳率: 64.4%
浏览 2

如何在resnet50主函数中输出一个额外变量?

我在改进centernet模型, 准备把resnet50主干网络中的几张特征图额外进行一个特征融合,输出融合后的特征图添加到后面模块里。但主函数里输出的是一个操作序列,不知道该怎么输出这额外的一个变量?
resnet

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        # 512,512,3 -> 256,256,64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
   
        # 256x256x64 -> 128x128x64
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change

        # 128x128x64 -> 128x128x256
        self.layer1 = self._make_layer(block, 64, layers[0])

        # 128x128x256 -> 64x64x512
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)

        # 64x64x512 -> 32x32x1024
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)

        # 32x32x1024 -> 16x16x2048
        self.layer4 = self._make_layer(block, 512, layers[3],stride=2)


        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        
        # 权重初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    # 第一个参数表示是bottleneck类,第二个表示该block的输出channel,第三个表示每个block包含多少残差,对应下面的[3, 4, 6, 3]
    def _make_layer(self, block, planes, blocks,stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                 nn.Conv2d(self.inplanes, planes * block.expansion,
                     kernel_size=1, stride=stride, bias=False),

            nn.BatchNorm2d(planes * block.expansion),
        )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)


        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)  # 128x128x64 -> 128x128x256

        x = self.layer2(x)    # 128x128x256 -> 64x64x512

        x = self.layer3(x) # 64x64x512 -> 32x32x1024

        x = self.layer4(x)# 32x32x1024 -> 16x16x2048

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

主函数

def resnet50(pretrained = True):
    model = ResNet(Bottleneck, [3, 4, 6, 3])#第一个参数用的是bottleneck,第二个参数是每层里卷积数量
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls['resnet50'], model_dir = 'model_data/')#导入预训练参数
        model.load_state_dict(state_dict)#用预训练的模型参数来初始化你构建的网络结构
    #----------------------------------------------------------#
    #   获取特征提取部分
    #----------------------------------------------------------#
    features = list([model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2, model.layer3, model.layer4])
    features = nn.Sequential(*features)
    return features #输出一个操作序列

centernet模型里各模块顺序

class CenterNet_Resnet50(nn.Module):
    def __init__(self, num_classes = 20, pretrained = False):
        super(CenterNet_Resnet50, self).__init__()
        #预训练     主干网络提取特征→解码→检测头
        self.pretrained = pretrained
        # 512,512,3 -> 16,16,2048
        self.backbone = resnet50(pretrained = pretrained)
        # 16,16,2048 -> 128,128,64
        self.decoder = resnet50_Decoder(2048)


        #-----------------------------------------------------------------#
        #   对获取到的特征进行上采样,进行分类预测和回归预测
        #   128, 128, 64 -> 128, 128, 64 -> 128, 128, num_classes
        #                -> 128, 128, 64 -> 128, 128, 2
        #                -> 128, 128, 64 -> 128, 128, 2
        #-----------------------------------------------------------------#
        self.head = resnet50_Head(channel=64, num_classes=num_classes)
        
        self._init_weights()

    def freeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad = False

    def unfreeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad = True

    def _init_weights(self):
        if not self.pretrained:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
        
        self.head.cls_head[-1].weight.data.fill_(0)
        self.head.cls_head[-1].bias.data.fill_(-2.19)
        
    def forward(self, x):
        feat = self.backbone(x)
        feat=self.decoder(feat)
        return self.head(feat)

  • 写回答

1条回答 默认 最新

  • CSDN-Ada助手 CSDN-AI 官方账号 2023-10-19 19:31
    关注

    【以下回答由 GPT 生成】

    你可以尝试修改ResNet主函数中的代码来添加一个变量,作为特征融合后的额外特征图。具体步骤如下:

    1. 在ResNet类的构造函数__init__中添加一个实例变量来存储额外的特征图,例如self.fusion_feature。初始化时可以将其设为None
    class ResNet(nn.Module):
        def __init__(self, block, layers, num_classes=1000):
            self.inplanes = 64
            super(ResNet, self).__init__()
    
            # ...
    
            # 添加额外的特征图变量
            self.fusion_feature = None
    
    1. 在ResNet内部函数_make_layer中,找到特征融合相关的代码,根据需要修改。在这个例子中,你可能会找到一个名为fusion_feature的变量。将其赋值给self.fusion_feature,以将其存储为类的实例变量。
    class ResNet(nn.Module):
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1:
                # ...
    
            # 找到特征融合相关的代码,并将fusion_feature赋值给self.fusion_feature
            fusion_feature = xxx  # 根据具体的代码修改,xxx是已有的代码中的一个变量
            self.fusion_feature = fusion_feature
    
    1. 在ResNet的forward函数中,将额外的特征图变量作为返回值之一进行输出。
    class ResNet(nn.Module):
        def forward(self, x):
            # ...
    
            # 返回主函数中需要的输出值和额外的特征图变量
            return main_output, self.fusion_feature
    

    这样修改后的代码将返回一个元组,其中第一个元素是原来的主函数输出,第二个元素是额外的特征图变量。你可以在主函数中通过解析这个返回值来获取所有输出。

    希望这样的解释对你有帮助!如果你有任何其他问题,请随时提问。



    【相关推荐】



    如果你已经解决了该问题, 非常希望你能够分享一下解决方案, 写成博客, 将相关链接放在评论区, 以帮助更多的人 ^-^
    评论

报告相同问题?

问题事件

  • 创建了问题 10月19日