求pawcs的matlab代码!!
只能找到c++的代码,但是想要matlab的
《A_Self-Adjusting_Approach_to_Change_Detection_Based_on_Background_Word_Consensus》这个文章的方法

求pawcs的matlab代码
- 写回答
- 好问题 0 提建议
- 关注问题
- 邀请回答
-
6条回答 默认 最新
- CSDN专家-sinJack 2023-07-26 14:17关注
获得1.80元问题酬金 可以尝试根据该论文中描述的算法步骤自行实现MATLAB代码。
以下是一个基本的框架,可用作开始:function [foregroundMask] = pawcs(imageSequence) % 初始化参数 numGaussians = 3; % 高斯模型数量 alpha = 0.01; % 学习速率 T = 0.9; % 阈值 % 初始化背景模型和权重 backgroundModel = cell(numGaussians, 1); weights = zeros(numGaussians, 1); % 处理图像序列 for i = 1:size(imageSequence, 4) frame = imageSequence(:, :, :, i); % 初始化前景掩码 foregroundMask = zeros(size(frame, 1), size(frame, 2)); % 对每个像素进行处理 for y = 1:size(frame, 1) for x = 1:size(frame, 2) pixelValue = double(squeeze(frame(y, x, :))); % 检测前景像素 isForegroundPixel = detectForegroundPixel(pixelValue, backgroundModel, weights, T); if isForegroundPixel foregroundMask(y, x) = true; end % 更新背景模型和权重 updateBackgroundModel(pixelValue, backgroundModel, weights, alpha); end end % 显示结果图像(可选) imshow(foregroundMask); pause(0.01); end end function isForegroundPixel = detectForegroundPixel(pixelValue, backgroundModel, weights, T) isForegroundPixel = false; for i = 1:numel(backgroundModel) gaussianMean = backgroundModel{i}.mean; gaussianCovarianceMatrixInverse = inv(backgroundModel{i}.covarianceMatrix); distanceSquaredThreshold = chi2inv(T * weights(i), numel(pixelValue)); distanceSquaredToMean = sum((pixelValue - gaussianMean) .* (pixelValue - gaussianMean)); if distanceSquaredToMean < distanceSquaredThreshold isForegroundPixel= true; break; end end end function updateBackgroundModel(pixelValue, backgroundModel, weights,alpha) ... % 根据论文中的公式更新背景模型和权重 ... end % 调用pawcs函数并传入图像序列作为输入参数,例如: imageSequence = ...; % 图像序列(H x W x C x N) foregroundMaskSequence= pawcs(imageSequence);
解决 无用评论 打赏 举报