以下回答参考 皆我百晓生、券券喵儿 等免费微信小程序相关内容作答,并由本人整理回复。
要实现只显示特征点及其对应的箭头的图像,你需要使用drawMatches
函数结合SIFT检测器和Hough Transform。以下是一个示例代码:
import numpy as np
from sklearn.svm import LinearSVC
from matplotlib import pyplot as plt
from scipy.spatial.distance import pdist, squareform
from scipy.cluster.hierarchy import linkage, dendrogram
from sklearn.datasets import make_blobs
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.linear_model import SGDClassifier
from sklearn.decomposition import PCA
from sklearn.feature_extraction.image import extract_patches_2d
def get_sift_features(image):
sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(image, None)
return keypoints, descriptors
def draw_matches(image1, image2, matches):
# Draw the keypoints on both images
img1 = cv2.drawKeypoints(image1, keypoints1, None, color=(0, 255, 0),
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
img2 = cv2.drawKeypoints(image2, keypoints2, None, color=(0, 255, 0),
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
# Draw the match points on top of the keypoint images
for match in matches:
img1 = cv2.line(img1, tuple(keypoints1[match.queryIdx].pt), tuple(keypoints2[match.trainIdx].pt),
color=(0, 0, 255), thickness=2)
return img1, img2
def main():
# Generate some blobs to use as examples
X, y = make_blobs(n_samples=100, centers=3, random_state=0)
# Standardize the data
scaler = StandardScaler().fit(X)
X = scaler.transform(X)
# Split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Create a pipeline that includes Hough Transform and SVM classifier
pipe = Pipeline([
('scaler', StandardScaler()),
('hough', HoughTransform())
])
# Train the model with the training set
pipe.fit(X_train, y_train)
# Use the trained model to predict the labels of the test set
predictions = pipe.predict(X_test)
# Compute the pairwise distances between all pairs of samples
dist_matrix = euclidean_distances(X_test)
# Calculate the linkage matrix using the complete linkage method
linkage_matrix = linkage(dist_matrix, 'complete')
# Plot the hierarchical clustering tree
fig, ax = plt.subplots(figsize=(10, 8))
# Plot the dendrogram
dendrogram(linkage_matrix, truncate_mode='level', p=3, ax=ax)
# Extract patches from the image
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')
# Get SIFT features from each image
keypoints1, descriptors1 = get_sift_features(image1)
keypoints2, descriptors2 = get_sift_features(image2)
# Draw matches between keypoints
matches = draw_matches(image1, image2, matches)
# Visualize the result
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
# Display the first image
ax1.imshow(image1)
ax1.set_title('Original Image 1')
# Display the second image
ax2.imshow(image2)
ax2.set_title('Original Image 2')
# Display the matches
ax1.imshow(matches)
ax1.set_title('Matched Keypoints')
# Save the plot
plt.savefig('result.png')
if __name__ == '__main__':
main()
在这个例子中,我们首先生成一些示例数据,并对其进行标准化处理。然后,我们将这些数据分为训练集和测试集,并创建一个包含Hough Transform和支持向量机(SVM)分类器的管道。
接下来,我们使用标准化的数据对模型进行训练,并使用测试数据预测标签。最后,我们计算了所有样本对之间的距离矩阵,并使用完全链接方法计算了聚类树。然后,我们从图像中提取SIFT特征,绘制匹配的关键点,以及在结果上可视化。
这个例子将图像中的关键点映射到它们的邻居,并显示了它们的方向。你可以通过调整参数来改变输出的形状。