Module: Elasticsearch::API::Inference::Actions

Defined in:
lib/elasticsearch/api/actions/inference/get.rb,
lib/elasticsearch/api/actions/inference/put.rb,
lib/elasticsearch/api/actions/inference/delete.rb,
lib/elasticsearch/api/actions/inference/rerank.rb,
lib/elasticsearch/api/actions/inference/update.rb,
lib/elasticsearch/api/actions/inference/inference.rb,
lib/elasticsearch/api/actions/inference/put_elser.rb,
lib/elasticsearch/api/actions/inference/completion.rb,
lib/elasticsearch/api/actions/inference/put_cohere.rb,
lib/elasticsearch/api/actions/inference/put_jinaai.rb,
lib/elasticsearch/api/actions/inference/put_openai.rb,
lib/elasticsearch/api/actions/inference/put_mistral.rb,
lib/elasticsearch/api/actions/inference/put_watsonx.rb,
lib/elasticsearch/api/actions/inference/put_voyageai.rb,
lib/elasticsearch/api/actions/inference/put_anthropic.rb,
lib/elasticsearch/api/actions/inference/text_embedding.rb,
lib/elasticsearch/api/actions/inference/put_azureopenai.rb,
lib/elasticsearch/api/actions/inference/put_alibabacloud.rb,
lib/elasticsearch/api/actions/inference/put_hugging_face.rb,
lib/elasticsearch/api/actions/inference/sparse_embedding.rb,
lib/elasticsearch/api/actions/inference/put_amazonbedrock.rb,
lib/elasticsearch/api/actions/inference/put_azureaistudio.rb,
lib/elasticsearch/api/actions/inference/put_elasticsearch.rb,
lib/elasticsearch/api/actions/inference/stream_completion.rb,
lib/elasticsearch/api/actions/inference/put_googleaistudio.rb,
lib/elasticsearch/api/actions/inference/put_googlevertexai.rb,
lib/elasticsearch/api/actions/inference/chat_completion_unified.rb

Instance Method Summary collapse

Instance Method Details

#chat_completion_unified(arguments = {}) ⇒ Object

Perform chat completion inference

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The inference Id (Required)

  • :timeout (Time)

    Specifies the amount of time to wait for the inference request to complete. Server default: 30s.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    chat_completion_request

Raises:

  • (ArgumentError)

See Also:



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# File 'lib/elasticsearch/api/actions/inference/chat_completion_unified.rb', line 34

def chat_completion_unified(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.chat_completion_unified' }

  defined_params = [:inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'body' missing" unless arguments[:body]
  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = "_inference/chat_completion/#{Utils.listify(_inference_id)}/_stream"
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#completion(arguments = {}) ⇒ Object

Perform completion inference on the service

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The inference Id (Required)

  • :timeout (Time)

    Specifies the amount of time to wait for the inference request to complete. Server default: 30s.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# File 'lib/elasticsearch/api/actions/inference/completion.rb', line 34

def completion(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.completion' }

  defined_params = [:inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = "_inference/completion/#{Utils.listify(_inference_id)}"
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#delete(arguments = {}) ⇒ Object

Delete an inference endpoint

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The task type

  • :inference_id (String)

    The inference identifier. (Required)

  • :dry_run (Boolean)

    When true, the endpoint is not deleted and a list of ingest processors which reference this endpoint is returned.

  • :force (Boolean)

    When true, the inference endpoint is forcefully deleted even if it is still being used by ingest processors or semantic text fields.

  • :headers (Hash)

    Custom HTTP headers

Raises:

  • (ArgumentError)

See Also:



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# File 'lib/elasticsearch/api/actions/inference/delete.rb', line 35

def delete(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.delete' }

  defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = nil

  _task_type = arguments.delete(:task_type)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_DELETE
  path   = if _task_type && _inference_id
             "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}"
           else
             "_inference/#{Utils.listify(_inference_id)}"
           end
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#get(arguments = {}) ⇒ Object

Get an inference endpoint

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The task type

  • :inference_id (String)

    The inference Id

  • :headers (Hash)

    Custom HTTP headers

See Also:



33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# File 'lib/elasticsearch/api/actions/inference/get.rb', line 33

def get(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.get' }

  defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = nil

  _task_type = arguments.delete(:task_type)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_GET
  path   = if _task_type && _inference_id
             "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}"
           elsif _inference_id
             "_inference/#{Utils.listify(_inference_id)}"
           else
             '_inference'
           end
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#inference(arguments = {}) ⇒ Object

Perform inference on the service. This API enables you to use machine learning models to perform specific tasks on data that you provide as an input. It returns a response with the results of the tasks. The inference endpoint you use can perform one specific task that has been defined when the endpoint was created with the create inference API. For details about using this API with a service, such as Amazon Bedrock, Anthropic, or HuggingFace, refer to the service-specific documentation.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of inference task that the model performs.

  • :inference_id (String)

    The unique identifier for the inference endpoint. (Required)

  • :timeout (Time)

    The amount of time to wait for the inference request to complete. Server default: 30s.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# File 'lib/elasticsearch/api/actions/inference/inference.rb', line 39

def inference(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.inference' }

  defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = if _task_type && _inference_id
             "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}"
           else
             "_inference/#{Utils.listify(_inference_id)}"
           end
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put(arguments = {}) ⇒ Object

Create an inference endpoint. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The task type

  • :inference_id (String)

    The inference Id (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    inference_config

Raises:

  • (ArgumentError)

See Also:



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# File 'lib/elasticsearch/api/actions/inference/put.rb', line 42

def put(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put' }

  defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'body' missing" unless arguments[:body]
  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = if _task_type && _inference_id
             "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}"
           else
             "_inference/#{Utils.listify(_inference_id)}"
           end
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_alibabacloud(arguments = {}) ⇒ Object

Create an AlibabaCloud AI Search inference endpoint. Create an inference endpoint to perform an inference task with the alibabacloud-ai-search service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :alibabacloud_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# File 'lib/elasticsearch/api/actions/inference/put_alibabacloud.rb', line 40

def put_alibabacloud(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_alibabacloud' }

  defined_params = [:task_type, :alibabacloud_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:alibabacloud_inference_id]
    raise ArgumentError,
          "Required argument 'alibabacloud_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _alibabacloud_inference_id = arguments.delete(:alibabacloud_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_alibabacloud_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_amazonbedrock(arguments = {}) ⇒ Object

Create an Amazon Bedrock inference endpoint. Creates an inference endpoint to perform an inference task with the amazonbedrock service.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :amazonbedrock_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# File 'lib/elasticsearch/api/actions/inference/put_amazonbedrock.rb', line 35

def put_amazonbedrock(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_amazonbedrock' }

  defined_params = [:task_type, :amazonbedrock_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:amazonbedrock_inference_id]
    raise ArgumentError,
          "Required argument 'amazonbedrock_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _amazonbedrock_inference_id = arguments.delete(:amazonbedrock_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_amazonbedrock_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_anthropic(arguments = {}) ⇒ Object

Create an Anthropic inference endpoint. Create an inference endpoint to perform an inference task with the anthropic service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The task type. The only valid task type for the model to perform is completion. (Required)

  • :anthropic_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# File 'lib/elasticsearch/api/actions/inference/put_anthropic.rb', line 41

def put_anthropic(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_anthropic' }

  defined_params = [:task_type, :anthropic_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:anthropic_inference_id]
    raise ArgumentError,
          "Required argument 'anthropic_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _anthropic_inference_id = arguments.delete(:anthropic_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_anthropic_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_azureaistudio(arguments = {}) ⇒ Object

Create an Azure AI studio inference endpoint. Create an inference endpoint to perform an inference task with the azureaistudio service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :azureaistudio_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# File 'lib/elasticsearch/api/actions/inference/put_azureaistudio.rb', line 40

def put_azureaistudio(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_azureaistudio' }

  defined_params = [:task_type, :azureaistudio_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:azureaistudio_inference_id]
    raise ArgumentError,
          "Required argument 'azureaistudio_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _azureaistudio_inference_id = arguments.delete(:azureaistudio_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_azureaistudio_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_azureopenai(arguments = {}) ⇒ Object

Create an Azure OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the azureopenai service. The list of chat completion models that you can choose from in your Azure OpenAI deployment include:

The list of embeddings models that you can choose from in your deployment can be found in the Azure models documentation. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. NOTE: The chat_completion task type only supports streaming and only through the _stream API. (Required)

  • :azureopenai_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# File 'lib/elasticsearch/api/actions/inference/put_azureopenai.rb', line 45

def put_azureopenai(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_azureopenai' }

  defined_params = [:task_type, :azureopenai_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:azureopenai_inference_id]
    raise ArgumentError,
          "Required argument 'azureopenai_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _azureopenai_inference_id = arguments.delete(:azureopenai_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_azureopenai_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_cohere(arguments = {}) ⇒ Object

Create a Cohere inference endpoint. Create an inference endpoint to perform an inference task with the cohere service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :cohere_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# File 'lib/elasticsearch/api/actions/inference/put_cohere.rb', line 40

def put_cohere(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_cohere' }

  defined_params = [:task_type, :cohere_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:cohere_inference_id]
    raise ArgumentError,
          "Required argument 'cohere_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _cohere_inference_id = arguments.delete(:cohere_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_cohere_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_elasticsearch(arguments = {}) ⇒ Object

Create an Elasticsearch inference endpoint. Create an inference endpoint to perform an inference task with the elasticsearch service.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :elasticsearch_inference_id (String)

    The unique identifier of the inference endpoint. The must not match the model_id. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# File 'lib/elasticsearch/api/actions/inference/put_elasticsearch.rb', line 36

def put_elasticsearch(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_elasticsearch' }

  defined_params = [:task_type, :elasticsearch_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:elasticsearch_inference_id]
    raise ArgumentError,
          "Required argument 'elasticsearch_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _elasticsearch_inference_id = arguments.delete(:elasticsearch_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_elasticsearch_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_elser(arguments = {}) ⇒ Object

Create an ELSER inference endpoint. Create an inference endpoint to perform an inference task with the elser service. You can also deploy ELSER by using the Elasticsearch inference integration.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :elser_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# File 'lib/elasticsearch/api/actions/inference/put_elser.rb', line 36

def put_elser(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_elser' }

  defined_params = [:task_type, :elser_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]
  raise ArgumentError, "Required argument 'elser_inference_id' missing" unless arguments[:elser_inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _elser_inference_id = arguments.delete(:elser_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_elser_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_googleaistudio(arguments = {}) ⇒ Object

Create an Google AI Studio inference endpoint. Create an inference endpoint to perform an inference task with the googleaistudio service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :googleaistudio_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# File 'lib/elasticsearch/api/actions/inference/put_googleaistudio.rb', line 40

def put_googleaistudio(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_googleaistudio' }

  defined_params = [:task_type, :googleaistudio_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:googleaistudio_inference_id]
    raise ArgumentError,
          "Required argument 'googleaistudio_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _googleaistudio_inference_id = arguments.delete(:googleaistudio_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_googleaistudio_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_googlevertexai(arguments = {}) ⇒ Object

Create a Google Vertex AI inference endpoint. Create an inference endpoint to perform an inference task with the googlevertexai service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :googlevertexai_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# File 'lib/elasticsearch/api/actions/inference/put_googlevertexai.rb', line 40

def put_googlevertexai(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_googlevertexai' }

  defined_params = [:task_type, :googlevertexai_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:googlevertexai_inference_id]
    raise ArgumentError,
          "Required argument 'googlevertexai_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _googlevertexai_inference_id = arguments.delete(:googlevertexai_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_googlevertexai_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_hugging_face(arguments = {}) ⇒ Object

Create a Hugging Face inference endpoint. Create an inference endpoint to perform an inference task with the hugging_face service. You must first create an inference endpoint on the Hugging Face endpoint page to get an endpoint URL. Select the model you want to use on the new endpoint creation page (for example intfloat/e5-small-v2), then select the sentence embeddings task under the advanced configuration section. Create the endpoint and copy the URL after the endpoint initialization has been finished. The following models are recommended for the Hugging Face service:

  • all-MiniLM-L6-v2

  • all-MiniLM-L12-v2

  • all-mpnet-base-v2

  • e5-base-v2

  • e5-small-v2

  • multilingual-e5-base

  • multilingual-e5-small

When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :huggingface_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# File 'lib/elasticsearch/api/actions/inference/put_hugging_face.rb', line 51

def put_hugging_face(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_hugging_face' }

  defined_params = [:task_type, :huggingface_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:huggingface_inference_id]
    raise ArgumentError,
          "Required argument 'huggingface_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _huggingface_inference_id = arguments.delete(:huggingface_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_huggingface_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_jinaai(arguments = {}) ⇒ Object

Create an JinaAI inference endpoint. Create an inference endpoint to perform an inference task with the jinaai service. To review the available rerank models, refer to <jina.ai/reranker>. To review the available text_embedding models, refer to the <jina.ai/embeddings/>. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :jinaai_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# File 'lib/elasticsearch/api/actions/inference/put_jinaai.rb', line 42

def put_jinaai(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_jinaai' }

  defined_params = [:task_type, :jinaai_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:jinaai_inference_id]
    raise ArgumentError,
          "Required argument 'jinaai_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _jinaai_inference_id = arguments.delete(:jinaai_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_jinaai_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_mistral(arguments = {}) ⇒ Object

Create a Mistral inference endpoint. Creates an inference endpoint to perform an inference task with the mistral service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The task type. The only valid task type for the model to perform is text_embedding. (Required)

  • :mistral_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# File 'lib/elasticsearch/api/actions/inference/put_mistral.rb', line 41

def put_mistral(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_mistral' }

  defined_params = [:task_type, :mistral_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:mistral_inference_id]
    raise ArgumentError,
          "Required argument 'mistral_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _mistral_inference_id = arguments.delete(:mistral_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_mistral_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_openai(arguments = {}) ⇒ Object

Create an OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the openai service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. NOTE: The chat_completion task type only supports streaming and only through the _stream API. (Required)

  • :openai_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# File 'lib/elasticsearch/api/actions/inference/put_openai.rb', line 41

def put_openai(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_openai' }

  defined_params = [:task_type, :openai_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:openai_inference_id]
    raise ArgumentError,
          "Required argument 'openai_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _openai_inference_id = arguments.delete(:openai_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_openai_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_voyageai(arguments = {}) ⇒ Object

Create a VoyageAI inference endpoint. Create an inference endpoint to perform an inference task with the voyageai service. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The type of the inference task that the model will perform. (Required)

  • :voyageai_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# File 'lib/elasticsearch/api/actions/inference/put_voyageai.rb', line 36

def put_voyageai(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_voyageai' }

  defined_params = [:task_type, :voyageai_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:voyageai_inference_id]
    raise ArgumentError,
          "Required argument 'voyageai_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _voyageai_inference_id = arguments.delete(:voyageai_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_voyageai_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#put_watsonx(arguments = {}) ⇒ Object

Create a Watsonx inference endpoint. Create an inference endpoint to perform an inference task with the watsonxai service. You need an IBM Cloud Databases for Elasticsearch deployment to use the watsonxai inference service. You can provision one through the IBM catalog, the Cloud Databases CLI plug-in, the Cloud Databases API, or Terraform. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for “state”: “fully_allocated” in the response and ensure that the “allocation_count” matches the “target_allocation_count”. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :task_type (String)

    The task type. The only valid task type for the model to perform is text_embedding. (Required)

  • :watsonx_inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# File 'lib/elasticsearch/api/actions/inference/put_watsonx.rb', line 43

def put_watsonx(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.put_watsonx' }

  defined_params = [:task_type, :watsonx_inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]

  unless arguments[:watsonx_inference_id]
    raise ArgumentError,
          "Required argument 'watsonx_inference_id' missing"
  end

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _task_type = arguments.delete(:task_type)

  _watsonx_inference_id = arguments.delete(:watsonx_inference_id)

  method = Elasticsearch::API::HTTP_PUT
  path   = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_watsonx_inference_id)}"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#rerank(arguments = {}) ⇒ Object

Perform rereanking inference on the service

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The unique identifier for the inference endpoint. (Required)

  • :timeout (Time)

    The amount of time to wait for the inference request to complete. Server default: 30s.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# File 'lib/elasticsearch/api/actions/inference/rerank.rb', line 34

def rerank(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.rerank' }

  defined_params = [:inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = "_inference/rerank/#{Utils.listify(_inference_id)}"
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#sparse_embedding(arguments = {}) ⇒ Object

Perform sparse embedding inference on the service

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The inference Id (Required)

  • :timeout (Time)

    Specifies the amount of time to wait for the inference request to complete. Server default: 30s.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# File 'lib/elasticsearch/api/actions/inference/sparse_embedding.rb', line 34

def sparse_embedding(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.sparse_embedding' }

  defined_params = [:inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = "_inference/sparse_embedding/#{Utils.listify(_inference_id)}"
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#stream_completion(arguments = {}) ⇒ Object

Perform streaming inference. Get real-time responses for completion tasks by delivering answers incrementally, reducing response times during computation. This API works only with the completion task type. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. This API requires the monitor_inference cluster privilege (the built-in inference_admin and inference_user roles grant this privilege). You must use a client that supports streaming.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The unique identifier for the inference endpoint. (Required)

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# File 'lib/elasticsearch/api/actions/inference/stream_completion.rb', line 37

def stream_completion(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.stream_completion' }

  defined_params = [:inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = "_inference/completion/#{Utils.listify(_inference_id)}/_stream"
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#text_embedding(arguments = {}) ⇒ Object

Perform text embedding inference on the service

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The inference Id (Required)

  • :timeout (Time)

    Specifies the amount of time to wait for the inference request to complete. Server default: 30s.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    request body

Raises:

  • (ArgumentError)

See Also:



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# File 'lib/elasticsearch/api/actions/inference/text_embedding.rb', line 34

def text_embedding(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.text_embedding' }

  defined_params = [:inference_id].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  method = Elasticsearch::API::HTTP_POST
  path   = "_inference/text_embedding/#{Utils.listify(_inference_id)}"
  params = Utils.process_params(arguments)

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end

#update(arguments = {}) ⇒ Object

Update an inference endpoint. Modify task_settings, secrets (within service_settings), or num_allocations for an inference endpoint, depending on the specific endpoint service and task_type. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs.

Parameters:

  • arguments (Hash) (defaults to: {})

    a customizable set of options

Options Hash (arguments):

  • :inference_id (String)

    The unique identifier of the inference endpoint. (Required)

  • :task_type (String)

    The type of inference task that the model performs.

  • :headers (Hash)

    Custom HTTP headers

  • :body (Hash)

    inference_config

Raises:

  • (ArgumentError)

See Also:



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# File 'lib/elasticsearch/api/actions/inference/update.rb', line 38

def update(arguments = {})
  request_opts = { endpoint: arguments[:endpoint] || 'inference.update' }

  defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables|
    set_variables[variable] = arguments[variable] if arguments.key?(variable)
  end
  request_opts[:defined_params] = defined_params unless defined_params.empty?

  raise ArgumentError, "Required argument 'body' missing" unless arguments[:body]
  raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id]

  arguments = arguments.clone
  headers = arguments.delete(:headers) || {}

  body = arguments.delete(:body)

  _inference_id = arguments.delete(:inference_id)

  _task_type = arguments.delete(:task_type)

  method = Elasticsearch::API::HTTP_PUT
  path   = if _task_type && _inference_id
             "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}/_update"
           else
             "_inference/#{Utils.listify(_inference_id)}/_update"
           end
  params = {}

  Elasticsearch::API::Response.new(
    perform_request(method, path, params, body, headers, request_opts)
  )
end