Documentation
¶
Overview ¶
Package partial provides helpers for partial function application.
Each function in this package has a suffix for arity that indicates the number of arguments of the provided input function f.
Each Left/Right function returns a function with a single argument that can be used to "partially apply" input function f with one argument already bound.
Functions have the prefix "Left" if they bind the left-most argument first, or "Right" if they bind the right-most argument first. The prefix "All" binds all arguments at once.
Each input function must return exactly one value. The "fun/result" and "fun/maybe" packages provide useful functions that can wrap functions that return (value, ok) or (value, error) result types into single-value return variants.
For example,
f(a, b, c) => x becomes g(b, c) => x, with a bound, by calling Left3(f)(a).
f(a, b, c) => x becomes g(a, b) => x, with c bound, by calling Right3(f)(c).
f(a, b, c) => x becomes g() => x, with a, b, and c bound, by calling All3(f)(a, b, c).
f(a) => x becomes g() => x, with a bound, by calling Single(f)(a).
Example (All) ¶
package main import ( "fmt" "math" "github.com/tawesoft/golib/v2/fun/partial" ) func main() { // Pythagoras theorem for calculating the hypotenuse of a triangle: // a squared + b squared = c squared. hyp := func(a float64, b float64) float64 { return math.Sqrt((a * a) + (b * b)) } // Suppose we want a function with no arguments that returns the answer // for a specific triangle. Imagine it's an expensive computation, we've // got lots of computations like this, and they're ones we might want to // run asynchronously across multiple workers. This is a simple "promise" // construct. // // Normally we could define it like this: hyp_2_3_verbose := func() float64 { return hyp(2, 3) } // But we can use "partial.All*" functions to do this for us (here, 2, // for the two arguments). hyp_2_3_terse := partial.All2(hyp)(2, 3) fmt.Printf("hyp_2_3_verbose = %.3f\n", hyp_2_3_verbose()) fmt.Printf("hyp_2_3_terse = %.3f\n", hyp_2_3_terse()) }
Output: hyp_2_3_verbose = 3.606 hyp_2_3_terse = 3.606
Example (Line) ¶
package main import ( "fmt" "github.com/tawesoft/golib/v2/fun/partial" ) func main() { // The formula for a line can be given by "y = mx + c", where m is the // gradient, and c is the offset where the line crosses the x-axis. line := func(x int, m int, c int) int { // solves for y return (m * x) + c // y = mx + c } // That's the general formula. Let's say we know c and m, and instead want // a single function y = f(x) that we can plug in values for x and get // a result for y. // For example, y = 3x + 5 where f(n) is f((3*n) + 5). // Given c, we can partially apply the function so y = f(mx) where // f(n) = n+5. To put it another way, c is now bound, and we only need m // and x as inputs now. lineC := partial.Right3(line)(5) // f(x, m, c) => f(x, m) // Given m, we can partially apply the function so y = f(g(x)) where g(n) // = m * n. To put it another way, m is now also bound, and we only need x // as an input now. lineMC := partial.Right2(lineC)(2) // f(x, m) => f(x) // Now we have a function y = 2x + 5. // Inputting x = 3... fmt.Println(lineMC(3)) // y = (2 * 3) + 5 = 11 }
Output: 11
Example (Maybe) ¶
package main import ( "fmt" "github.com/tawesoft/golib/v2/fun/maybe" "github.com/tawesoft/golib/v2/fun/partial" ) func main() { // divides two numbers, while checking for divide by zero. divide := func(x int, y int) (value int, ok bool) { if y == 0 { return 0, false } return x / y, true } // we need a single return value, so convert the function to one that // returns a single [maybe.M]. maybeDivide := maybe.WrapFunc2(divide) // we create a function, divider, with one argument, that can be used to // construct new functions that divide by a constant factor. divider := partial.Right2(maybeDivide) // bind a constant factor to the divide function, and also convert it back // to a function that returns (value int, ok bool) instead of a [maybe.M]. divideByTwo := maybe.UnwrapFunc(divider(2)) divideByZero := maybe.UnwrapFunc(divider(0)) { result, ok := divideByTwo(10) fmt.Printf("divideByTwo(10) = %d, %t\n", result, ok) } { result, ok := divideByZero(10) fmt.Printf("divideByZero(10) = %d, %t\n", result, ok) } }
Output: divideByTwo(10) = 5, true divideByZero(10) = 0, false
Index ¶
- func All2[A any, B any, Return any](f func(A, B) Return) func(A, B) func() Return
- func All3[A any, B any, C any, Return any](f func(A, B, C) Return) func(A, B, C) func() Return
- func All4[A any, B any, C any, D any, Return any](f func(A, B, C, D) Return) func(A, B, C, D) func() Return
- func Left2[A any, B any, Return any](f func(a A, b B) Return) func(a A) func(b B) Return
- func Left3[A any, B any, C any, Return any](f func(a A, b B, c C) Return) func(a A) func(b B, c C) Return
- func Left4[A any, B any, C any, D any, Return any](f func(a A, b B, c C, d D) Return) func(a A) func(b B, c C, d D) Return
- func Right2[A any, B any, Return any](f func(a A, b B) Return) func(b B) func(a A) Return
- func Right3[A any, B any, C any, Return any](f func(a A, b B, c C) Return) func(c C) func(a A, b B) Return
- func Right4[A any, B any, C any, D any, Return any](f func(a A, b B, c C, d D) Return) func(d D) func(a A, b B, c C) Return
- func Single[T any, Return any](f func(t T) Return) func(t T) func() Return
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Single ¶ added in v2.2.0
Single takes a function with a single argument and return value and constructs a function that takes a single argument and returns a function that takes no arguments and returns a single value.
For example,
opener := partial.Single(result.WrapFunc(os.Open)) fooOpener := opener("foo.txt") f, err := fooOpener().Unpack()
Types ¶
This section is empty.