=DB

POSTGRES

Pluggable Table Storage In
PostgreSQL

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec
anarazel.de/talks/2019-05-30-pgcon-pluggable-table-storage/pluggable.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

Pluggable Table Storage / tableam

CREATE TABLE ...(...) USING heap;

In collaboration with:
- Haribabu Komm

- Alvaro Herrera

— Ashutosh Bapat

- Alexander Korotkov
- Amit Khandekar

- Dmitry Dolgov

=DB

POSTGRES

What do you mean: table storage

* Contents of a TABLE / MATERIALIZED VIEW
* NOT contents of indexes
* Not purely a change of IO layer

=DB

POSTGRES

What do you mean: pluggable

CREATE EXTENSION magic_storage;
CREATE TABLE something (..) USING magic_storage;
SET default_table_access_method = ‘magic_storage’;

CREATE TABLE else (..); -- still uses magic_storage

=DB

POSTGRES

Why?

« ZHeap — UNDO based storage, address bloat and write
amplification problems

* Columnar Storage
* EXperiments

=DB

POSTGRES

Why not?

* Proliferation of half-baked storage engines, rather than one or
two good ones

* Proliferation of closed & commercial storage engines

* Architectural impact

=DB

POSTGRES

What?

* Multiple table AMs should be able to exist at compile time

* new table AMs can be added at runtime (i.e. CREATE
EXTENSION new_am;)

* Indexes: Should work across different table AMs

* Planner: Should work largely unmodified against different AMs
* NOT: stable API for near-term future

 NOT: Fully extensible WAL logging

* NOT: non-heap catalog tables

* NOT: Executor/Planner magic to make every storage method
super fast

=DB

POSTGRES

Contrast to Foreign Data Wrapper API

* FDWs basically hook in at the planner level
* FDWs not intended to locally store data

* Transactional Integration

* FDWs do not really support DDL

* Foreign Keys not supported (and it doesn’t really make sense
to support)

* Different goals, but some overlap exists

=DB

POSTGRES

Client

A%
@

Postgres

DB

POSTGRES

Table AM Handlers

postgres[28850][1]=# SELECT * FROM pg_am WHERE amtype = 't';

amname amhandler amtype
heap heap_tableam_handler t
(1 row)

postgres[28850][1]=# \df heap_tableam_handler
List of functions

Schema Name Result data type | Argument data types Type
pg_catalog heap_tableam_handler table_am_handler internal func
(1 row)

=DB

POSTGRES

Table AM Handlers

Datum
heap_tableam_handler (PG_FUNCTION_ARGS)

{
}

static const TableAmRoutine heapam_methods = {
.type = T_TableAmRoutine,

PG_RETURN_POINTER(&heapam_methods);
.slot_callbacks = heapam_slot_callbacks,

%

=DB

POSTGRES

Table AM APl — DML & DDL

/*

* API struct for a table AM. Note instances of this this must be
* allocated in a server-lifetime manner, typically as a static const struct.

typedef struct TableAmRoutine

*/

{

B void
void
void
double

}

(*tuple_insert) (Relation rel, TupleTableSlot *slot,
CommandId cid, int options,
struct BulkInsertStateData *bistate);

(*relation_set_new_filenode) (Relation rel,
const RelFileNode *newrnode,
char persistence,
TransactionId *freezeXid,
MultiXactId *minmulti);
(*relation_vacuum) (Relation onerel,
struct VacuumParams *params,
BufferAccessStrategy bstrategy);

(*index_build_range_scan) (..);

TableAmRoutine; L m

POSTGRES

Table AM API — Scans

typedef struct TableAmRoutine
{
TableScanDesc (*scan_begin) (Relation rel,
Snapshot snapshot,
int nkeys, struct ScanKeyData *key,
ParallelTableScanDesc pscan,
uint32 flags);
TableScanDesc (*scan_begin) (Relation rel,
Snapshot snapshot,
int nkeys, struct ScanKeyData *key,

ParallelTableScanDesc pscan,
uint32 flags);

bool (*scan_bitmap_next_block) (TableScanDesc scan,
struct TBMIterateResult *tbmres);
bool (*scan_bitmap_next_tuple) (TableScanDesc scan,

struct TBMIterateResult *tbmres,
TupleTableSlot *slot);

} TableAmRoutine;

=DB

POSTGRES

Infrastructure Changes

* Remove WITH OIDs support

* Generalize tuple slots
- different types of tuples have different storage requirements
- lots of rote changes
- More complex slot changes:
» Triggers
* EvalPlanQual

* Fix discrepancies between “declared” type of slot, and actually returned slot types
+ COPY

* Non-trivial changes to route things through tableam:
- Executor:
* Bitmap Scan
* Sample Scan
- DDL
« ALTER TABLE SET TABLESPACE
« ANALYZE
« CLUSTER /VACUUM FULL
« VACUUM

* Other changes
- error checks in extensions like pageinspect

=DB

POSTGRES

What's Bad

* Function naming very confused (heap in a lot of functions
unrelated to heap)

* Unnecessary conversions to/from HeapTuple
— particularly around triggers

* Index only & bitmap scan nodes access visibilitymap

* pg_relation_size() looks at filesystem, rather than go through
AM

=DB

POSTGRES

Limits: WAL Logging

* introducing new WAL record types not possible without
patching core code

* access/generic_xlog.hisn’t fast/small / capable enough

* need proper extensible WAL
- dynamic registry problem repeatedly debated, not easy
— static registry in core?

=DB

POSTGRES

Limits: TID Format

typedef struct ItemPointerData

{
BlockIdData ip_blkid; // 4 bytes

OffsetNumber ip_posid; // 2 bytes

* limits table size
* limits type of storage (no index organized table)

* What's needed to fix:
- Invent smart variable width encoding

- Have space for wider TIDs in indexes
also helps global indexes and indirect indexes

— Change lots of functions to accept variable width functions

=DB

POSTGRES

Limits: Planner / Executor Integration

Improvements particularly needed for efficiency for some
storage types (columnar)

— can partially be addressed via planner hooks + custom executor nodes

Scans need to know the to-be-accessed columns
- very important for columnar, but even interesting for heap
— should be integrated with both AM and various slot types

Costing improvements for individual AMs
- can partially be “addressed” by skewing returned planner estimates

=DB

POSTGRES

Limit; relation filenodes & forks

* relation forks not necessarily a good idea / set of forks not
enough for all AMs

* only one relation fork for each pg_class entry

* to be integrated into base backups, files have to be in the
traditional directories

=DB

POSTGRES

Limit: Catalog on non-heap AM

* lots of rote code changes needed to not assume heap
* struct/ table content mapping

* assumptions about precise transactional behavior (e.g. cache
iInvalidation via xmin checks)

=DB

POSTGRES

Limit: AMs assumed to be block based

 Planner cost estimates in blocks
* Analyze sampling is block based

=DB

POSTGRES

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

