
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Generate Random Array in Python and Calculate Max-Min in DataFrame
Result for generating dataframe maximum by a minimum of each row is
0 43.000000 1 1.911111 2 2.405405 3 20.000000 4 7.727273 5 6.333333
To solve this, we will follow the steps given below −
Solution 1
Define a dataframe with size of 30 random elements from 1 to 100 and reshape the array by (6,5) to change 2-D array
df = pd.DataFrame(np.random.randint(1,100,30).reshape(6,5))
Create df.apply function inside lambda method to calculate np.max(x)/np.min(x) with axis as 1 and save as max_of_min. It is defined below,
max_of_min = df.apply(lambda x: np.max(x)/np.min(x), axis=1)
Finally print the max_of_min
Example
Let’s check the following code to get a better understanding −
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(1,100,30).reshape(6,5)) print("Dataframe is:\n",df) max_of_min = df.apply(lambda x: np.max(x)/np.min(x), axis=1) print("maximum by minimum of each row:\n",max_of_min)
Output
Dataframe is: 0 1 2 3 4 0 2 13 4 15 86 1 60 53 86 75 45 2 37 85 40 89 88 3 67 33 80 4 74 4 85 71 11 67 81 5 56 85 95 15 94 maximum by minimum of each row: 0 43.000000 1 1.911111 2 2.405405 3 20.000000 4 7.727273 5 6.333333 dtype: float64
Advertisements