
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas to_feather() Method
The to_feather() method in Pandas allows you to save DataFrame data into a binary feather format file.
The feather file format is a portable file format for saving the DataFrame. It is a fast and language-independent binary file format designed for efficient data interchange. It is supported by both Python and R languages, ensuring easy data sharing compatibility across data analysis languages. This format is also efficient for fast reading and writing capabilities with less memory usage.
Note: Before using the DataFrame.to_feather() method you need to install the 'pyarrow' library. It is an optional Python dependency library that must be installed using the following command −
pip install pyarrow
Syntax
Following is the syntax of the Python Pandas to_feather() method −
DataFrame.to_feather(path, **kwargs)
Parameters
The Python Pandas DataFrame.to_feather() method accepts the below parameters −
path − This parameter accepts a string, path object, or file-like object, representing the file path where the DataFrame should be saved.
**kwargs: Additional keyword arguments supported by pyarrow.feather.write_table() method, such as the compression, compression_level, chunksize and version keywords.
Return Value
The Pandas DataFrame.to_feather() method returns None, but saves the DataFrame as a feather file at the specified path.
Example: Saving a DataFrame to a Feather File
Here is a basic example demonstrating how to save a Pandas DataFrame as a Feather file using the DataFrame.to_feather() method.
import pandas as pd # Create a DataFrame df = pd.DataFrame({"Col_1": range(5), "Col_2": range(5, 10)}) print("Original DataFrame:") print(df) # Save the DataFrame as a feather file df.to_feather("df_feather_file.feather") print("\nDataFrame is successfully saved as a feather file.")
When we run above program, it produces following result −
Original DataFrame:
Col_1 | Col_2 | |
---|---|---|
0 | 0 | 5 |
1 | 1 | 6 |
2 | 2 | 7 |
3 | 3 | 8 |
4 | 4 | 9 |
If you visit the folder where the feather files are saved, you can observe the generated feather file.
Example: Saving feather file with Compression
The following example shows how to use the to_feather() method for saving the Pandas DataFrame as a feather file with compression.
import pandas as pd # Create a DataFrame df = pd.DataFrame({"Col_1": range(5), "Col_2": range(5, 10)}) print("Original DataFrame:") print(df) # Save the DataFrame to a feather file with compression df.to_feather('compressed_data.feather', compression='zstd') print("DataFrame saved with compression..")
Following is an output of the above code −
Original DataFrame:
Col_1 | Col_2 | |
---|---|---|
0 | 0 | 5 |
1 | 1 | 6 |
2 | 2 | 7 |
3 | 3 | 8 |
4 | 4 | 9 |
Example: Saving feather with Feather Version 1
The DataFrame.to_feather() method also accepts a version parameter for changing the default feather file version 2 to 1.
import pandas as pd # Create a DataFrame df = pd.DataFrame({"Col_1": [1, 2, 3, 4, 5], "Col_2": ["a", "b", "c", "d", "e"]}) print("Original DataFrame:") print(df) # Save the DataFrame to a feather file with version 1 df.to_feather('df_feather_file_v1.feather', version=1) print("DataFrame saved with Feather version 1..")
Following is an output of the above code −
Original DataFrame:
Col_1 | Col_2 | |
---|---|---|
0 | 1 | a |
1 | 2 | b |
2 | 3 | c |
3 | 4 | d |
4 | 5 | e |
Example: Save Pandas DataFrame to In-Memory Feather
This example saves a Pandas DataFrame as an in-memory feather file using the DataFrame.to_feather() method.
import pandas as pd import io # Create a Pandas DataFrame df = pd.DataFrame(data={'Col_1': [1, 2], 'Col_2': [3.0, 4.0]}) # Display the Input DataFrame print("Original DataFrame:") print(df) # Save the DataFrame as In-Memory feather buf = io.BytesIO() df.to_feather(buf) output = pd.read_feather(buf) print('Saved DataFrame as In-Memory feather:') print(output)
While executing the above code we get the following output −
Original DataFrame:
Col_1 | Col_2 | |
---|---|---|
0 | 1 | 3.0 |
1 | 2 | 4.0 |
Col_1 | Col_2 | |
---|---|---|
0 | 1 | 3.0 |
1 | 2 | 4.0 |