
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Pandas DataFrame read_xml() Method
The Python Pandas library provides the read_xml() method to read data from an XML document and convert it into a Pandas DataFrame object. This method is a powerful tool for handling structured XML data in tabular form, enabling users to process and analyze XML data effectively.
XML (Extensible Markup Language) is a popular data exchange format, often used for hierarchical and structured data. With the read_xml() method, you can extract XML data into Pandas for further manipulation and analysis. This method also provides various options for handling complex XML structures and attributes.
Syntax
The syntax of the read_xml() method is as follows −
pandas.read_xml(path_or_buffer, *, xpath='./*', namespaces=None, elems_only=False, attrs_only=False, names=None, dtype=None, converters=None, parse_dates=None, encoding='utf-8', parser='lxml', stylesheet=None, iterparse=None, compression='infer', storage_options=None, dtype_backend=<no_default>
Parameters
The Python Pandas read_xml() method accepts the following parameters −
path_or_buffer: The file path, URL, or file-like object containing the XML data.
xpath: A string that specifies the XPath to parse specific nodes in the XML. Default is "./*".
namespaces: A dictionary to map prefixes to namespace URIs for XPath.
elems_only: If True, parses only child elements.
attrs_only: If set to True, parses only attributes at the specified XPath.
names: Determines the column names for parsing the XML data into DataFrame.
dtype: Specifies the data type for columns in resultant DataFrame.
converters: It takes a dictionary of functions for converting values in certain columns.
parser: The XML parser to use. Options include 'lxml' (default) and 'etree'.
stylesheet: Path to an XSLT stylesheet to transform the XML before parsing.
dtype_backend: Specifies the data backend for nullable types.
encoding: The encoding of the input file. Default is 'utf-8'.
compression: Indicates if the XML file is compressed. Options include 'infer', 'gzip', 'bz2', 'zip', etc.
storage_options: Additional options for remote storage connections.
Return Value
The read_xml() method returns a Pandas DataFrame containing the parsed data from the XML document.
Example: Reading a Simple XML File
Here is a basic example that demonstrates how to use the read_xml() method to read an XML file and convert it to a DataFrame.
import pandas as pd # Create an XML Document first # Sample DataFrame df = pd.DataFrame({'name': ['Tanmay', 'Manisha'], 'company': ['TutorialsPoint', 'TutorialsPoint'], 'phone': ['(011) 123-4567', '(011) 789-4567'] }) # Save DataFrame to XML df.to_xml("simple_data.xml") # Read XML data from a file df = pd.read_xml('simple_data.xml') print("DataFrame:") print(df)
The output of the above code will be −
index | name | company | phone | |
---|---|---|---|---|
0 | 0 | Tanmay | TutorialsPoint | (011) 123-4567 |
1 | 1 | Manisha | TutorialsPoint | (011) 789-4567 |
Example: Reading an XML String
Instead of reading XML data from a local file, the following example demonstrates reading a string that representing the XML data into the Pandas DataFrame.
import pandas as pd from io import StringIO # Create an XML string xml_string ="""<?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <Name>Kiran</Name> <Age>25</Age> <City>New Delhi</City> </row> <row> <index>1</index> <Name>Priya</Name> <Age>30</Age> <City>Hyderabad</City> </row> <row> <index>2</index> <Name>Naveen</Name> <Age>35</Age> <City>Chennai</City> </row> </data> """ # Read XML string df = pd.read_xml(StringIO(xml_string)) print("DataFrame from XML string:") print(df)
Output of the above code is as follows −
DataFrame from XML string:
index | Name | Age | City | |
---|---|---|---|---|
0 | 0 | Kiran | 25 | New Delhi |
1 | 1 | Priya | 30 | Hyderabad |
2 | 2 | Naveen | 35 | Chennai |
Example: Reading XML Data with Custom XPath
This example demonstrates how to use a custom XPath query to extract specific elements from an XML document. The following example reads only the "title" element from the XML data using the xpath parameter.
import pandas as pd from io import StringIO # Create an XML String xml = """<?xml version="1.0" encoding="UTF-8"?> <bookstore> <book category="cooking"> <title lang="en">Everyday Italian</title> <author>Giada De Laurentiis</author> <year>2005</year> <price>30.00</price> </book> <book category="children"> <title lang="en">Harry Potter</title> <author>J K. Rowling</author> <year>2005</year> <price>29.99</price> </book> <book category="web"> <title lang="en">Learning XML</title> <author>Erik T. Ray</author> <year>2003</year> <price>39.95</price> </book> </bookstore>""" # Read XML data with a custom XPath df = pd.read_xml(StringIO(xml), xpath=".//title") # Diaplay the Output DataFrame print("Output DataFrame with custom XPath:") print(df)
Following is an output of the above code −
Output DataFrame with custom XPath:
lang | title | |
---|---|---|
0 | en | Everyday Italian |
1 | en | Harry Potter |
2 | en | Learning XML |
Example: Reading Compressed XML Files
The compression parameter allows reading compressed XML files. The following example shows how to read a compressed XML file using the compression parameter.
import pandas as pd # Create an XML Document first # Sample DataFrame df = pd.DataFrame({'name': ['Tanmay', 'Manisha'], 'company': ['TutorialsPoint', 'TutorialsPoint'], 'phone': ['(011) 123-4567', '(011) 789-4567'] }) # Save DataFrame to compressed XML df.to_xml("compressed_data.xml.gz", compression='gzip') # Read a compressed XML file df = pd.read_xml('compressed_data.xml.gz', compression='gzip') print("DataFrame from compressed XML:") print(df)
Output of the above code is as follows −
DataFrame from compressed XML:
index | name | company | phone | |
---|---|---|---|---|
0 | 0 | Tanmay | TutorialsPoint | (011) 123-4567 |
1 | 1 | Manisha | TutorialsPoint | (011) 789-4567 |
Example: Parsing XML with Custom Date Parsing
This example uses the pandas.read_xml() method to handle nullable types and date parsing using the dtype_backend and parse_dates parameters respectively.
import pandas as pd from io import StringIO # XML string with timestamps xml_content = '''<data> <record> <id>1</id> <value>3.14</value> <flag>True</flag> <label>X</label> <timestamp>2025-01-01 12:00:00</timestamp> </record> <record> <id>2</id> <value>6.28</value> <flag>False</flag> <label>Y</label> <timestamp>2025-01-02 12:00:00</timestamp> </record> </data> ''' # Parsing the XML data df = pd.read_xml(StringIO(xml_content), dtype_backend="numpy_nullable", parse_dates=["timestamp"]) # Diaplay the Output DataFrame print("Output DataFrame:") print(df)
Following is an output of the above code −
Output DataFrame:
id | value | flag | label | timestamp | |
---|---|---|---|---|---|
0 | 1 | 3.14 | True | X | 2025-01-01 12:00:00 |
1 | 2 | 6.28 | False | Y | 2025-01-02 12:00:00 |