
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Python - Higher Order Functions
Higher-order functions in Python allows you to manipulate functions for increasing the flexibility and re-usability of your code. You can create higher-order functions using nested scopes or callable objects.
Additionally, the functools module provides utilities for working with higher-order functions, making it easier to create decorators and other function-manipulating constructs. This tutorial will explore the concept of higher-order functions in Python and demonstrate how to create them.
What is a Higher-Order Function?
A higher-order function is a function that either, takes one or more functions as arguments or returns a function as its result. Below you can observe the some of the properties of the higher-order function in Python −
- A function can be stored in a variable.
- A function can be passed as a parameter to another function.
- A high order functions can be stored in the form of lists, hash tables, etc.
- Function can be returned from a function.
To create higher-order function in Python you can use nested scopes or callable objects. Below we will discuss about them briefly.
Creating Higher Order Function with Nested Scopes
One way to defining a higher-order function in Python is by using nested scopes. This involves defining a function within another function and returns the inner function.
Example
Let's observe following example for creating a higher order function in Python. In this example, the multiplier function takes one argument, a, and returns another function multiply, which calculates the value a * b
def multiplier(a): # Nested function with second number def multiply(b): # Multiplication of two numbers return a * b return multiply # Assigning nested multiply function to a variable multiply_second_number = multiplier(5) # Using variable as high order function Result = multiply_second_number(10) # Printing result print("Multiplication of Two numbers is: ", Result)
Output
On executing the above program, you will get the following results −
Multiplication of Two numbers is: 50
Creating Higher-Order Functions with Callable Objects
Another approach to create higher-order functions is by using callable objects. This involves defining a class with a __call__ method.
Example
Here is the another approach to creating higher-order functions is using callable objects.
class Multiplier: def __init__(self, factor): self.factor = factor def __call__(self, x): return self.factor * x # Create an instance of the Multiplier class multiply_second_number = Multiplier(2) # Call the Multiplier object to computes factor * x Result = multiply_second_number(100) # Printing result print("Multiplication of Two numbers is: ", Result)
Output
On executing the above program, you will get the following results −
Multiplication of Two numbers is: 200
Higher-order functions with the 'functools' Module
The functools module provides higher-order functions that act on or return other functions. Any callable object can be treated as a function for the purposes of this module.
Working with Higher-order functions using the wraps()
In this example, my_decorator is a higher-order function that modifies the behavior of invite function using the functools.wraps() function.
import functools def my_decorator(f): @functools.wraps(f) def wrapper(*args, **kwargs): print("Calling", f.__name__) return f(*args, **kwargs) return wrapper @my_decorator def invite(name): print(f"Welcome to, {name}!") invite("Tutorialspoint")
Output
On executing the above program, you will get the following results −
Calling invite Welcome to, Tutorialspoint!
Working with Higher-order functions using the partial()
The partial() function of the functools module is used to create a callable 'partial' object. This object itself behaves like a function. The partial() function receives another function as argument and freezes some portion of a functions arguments resulting in a new object with a simplified signature.
Example
In following example, a user defined function myfunction() is used as argument to a partial function by setting default value on one of the arguments of original function.
import functools def myfunction(a,b): return a*b partfunction = functools.partial(myfunction,b = 10) print(partfunction(10))
Output
On executing the above program, you will get the following results −
100
Working with Higher-order functions using the reduce()
Similar to the above approach the functools module provides the reduce() function, that receives two arguments, a function and an iterable. And, it returns a single value. The argument function is applied cumulatively two arguments in the list from left to right. Result of the function in first call becomes first argument and third item in list becomes second. This is repeated till list is exhausted.
Example
import functools def mult(x,y): return x*y # Define a number to calculate factorial n = 4 num = functools.reduce(mult, range(1, n+1)) print (f'Factorial of {n}: ',num)
Output
On executing the above program, you will get the following results −
Factorial of 4: 24