Find K for KxK Square of Same Value in C++



Suppose we have a 2d matrix, we have to find the largest k × k submatrix where all of its elements are containing the same value, then find the value of k.

So, if the input is like

1 1 8 3
1 5 5 5
2 5 5 5
4 5 5 5

then the output will be 3, as there is a 3 × 3 square matrix of value 5.

To solve this, we will follow these steps −

  • n := row count of matrix

  • m := column count of matrix

  • Define one 2D array dp of size (n x m) and fill with 1

  • ret := 1

  • for initialize i := n - 1, when i >= 0, update (decrease i by 1), do −

    • for initialize j := m - 1, when j >= 0, update (decrease j by 1), do −

      • val := inf

      • if i + 1 < n and v[i + 1, j] is same as v[i, j], then −

        • val := minimum of dp[i + 1, j] and val

      • Otherwise

        • val := 0

      • if j + 1 < m and v[i, j + 1] is same as v[i, j], then −

        • val := minimum of dp[i, j + 1] and val

      • Otherwise

        • val := 0

      • if i + 1 < n and j + 1 < m and v[i + 1, j + 1] is same as v[i, j], then −

        • val := minimum of dp[i + 1, j + 1] and val

      • Otherwise

        • val := 0

      • if val is same as inf, then −

        • Ignore following part, skip to the next iteration

      • dp[i, j] := dp[i, j] + val

        • ret := maximum of ret and dp[i, j]

  • return ret

Example 

Let us see the following implementation to get better understanding −

 Live Demo

#include <bits/stdc++.h>
using namespace std;
class Solution {
   public:
   int solve(vector<vector<int>>& v) {
      int n = v.size();
      int m = v[0].size();
      vector<vector<int>> dp(n, vector<int>(m, 1));
      int ret = 1;
      for (int i = n - 1; i >= 0; i--) {
         for (int j = m - 1; j >= 0; j--) {
            int val = INT_MAX;
            if (i + 1 < n && v[i + 1][j] == v[i][j]) {
               val = min(dp[i + 1][j], val);
            }
            else {
               val = 0;
            }
            if (j + 1 < m && v[i][j + 1] == v[i][j]) {
               val = min(dp[i][j + 1], val);
            }
            else {
               val = 0;
            }
            if (i + 1 < n && j + 1 < m && v[i + 1][j + 1] == v[i][j]) {
               val = min(dp[i + 1][j + 1], val);
            }
            else {
               val = 0;
            }
            if (val == INT_MAX)
               continue;
               dp[i][j] += val;
               ret = max(ret, dp[i][j]);
            }
         }
         return ret;
      }
};
int solve(vector<vector<int>>& matrix) {
   return (new Solution())->solve(matrix);
}
int main(){
   vector<vector<int>> matrix = {
      {1, 1, 8, 3},
      {1, 5, 5, 5},
      {2, 5, 5, 5},
      {4, 5, 5, 5}
   };
   cout << solve(matrix);
}

Input

{ {1, 1, 8, 3}, {1, 5, 5, 5}, {2, 5, 5, 5}, {4, 5, 5,
5} };

Output

3
Updated on: 2020-12-23T06:21:22+05:30

146 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements