
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find K for KxK Square of Same Value in C++
Suppose we have a 2d matrix, we have to find the largest k × k submatrix where all of its elements are containing the same value, then find the value of k.
So, if the input is like
1 | 1 | 8 | 3 |
1 | 5 | 5 | 5 |
2 | 5 | 5 | 5 |
4 | 5 | 5 | 5 |
then the output will be 3, as there is a 3 × 3 square matrix of value 5.
To solve this, we will follow these steps −
n := row count of matrix
m := column count of matrix
Define one 2D array dp of size (n x m) and fill with 1
ret := 1
-
for initialize i := n - 1, when i >= 0, update (decrease i by 1), do −
-
for initialize j := m - 1, when j >= 0, update (decrease j by 1), do −
val := inf
-
if i + 1 < n and v[i + 1, j] is same as v[i, j], then −
val := minimum of dp[i + 1, j] and val
-
Otherwise
val := 0
-
if j + 1 < m and v[i, j + 1] is same as v[i, j], then −
val := minimum of dp[i, j + 1] and val
-
Otherwise
val := 0
-
if i + 1 < n and j + 1 < m and v[i + 1, j + 1] is same as v[i, j], then −
val := minimum of dp[i + 1, j + 1] and val
-
Otherwise
val := 0
-
if val is same as inf, then −
Ignore following part, skip to the next iteration
-
dp[i, j] := dp[i, j] + val
ret := maximum of ret and dp[i, j]
-
return ret
Example
Let us see the following implementation to get better understanding −
#include <bits/stdc++.h> using namespace std; class Solution { public: int solve(vector<vector<int>>& v) { int n = v.size(); int m = v[0].size(); vector<vector<int>> dp(n, vector<int>(m, 1)); int ret = 1; for (int i = n - 1; i >= 0; i--) { for (int j = m - 1; j >= 0; j--) { int val = INT_MAX; if (i + 1 < n && v[i + 1][j] == v[i][j]) { val = min(dp[i + 1][j], val); } else { val = 0; } if (j + 1 < m && v[i][j + 1] == v[i][j]) { val = min(dp[i][j + 1], val); } else { val = 0; } if (i + 1 < n && j + 1 < m && v[i + 1][j + 1] == v[i][j]) { val = min(dp[i + 1][j + 1], val); } else { val = 0; } if (val == INT_MAX) continue; dp[i][j] += val; ret = max(ret, dp[i][j]); } } return ret; } }; int solve(vector<vector<int>>& matrix) { return (new Solution())->solve(matrix); } int main(){ vector<vector<int>> matrix = { {1, 1, 8, 3}, {1, 5, 5, 5}, {2, 5, 5, 5}, {4, 5, 5, 5} }; cout << solve(matrix); }
Input
{ {1, 1, 8, 3}, {1, 5, 5, 5}, {2, 5, 5, 5}, {4, 5, 5, 5} };
Output
3