
- Matplotlib - Home
- Matplotlib - Introduction
- Matplotlib - Vs Seaborn
- Matplotlib - Environment Setup
- Matplotlib - Anaconda distribution
- Matplotlib - Jupyter Notebook
- Matplotlib - Pyplot API
- Matplotlib - Simple Plot
- Matplotlib - Saving Figures
- Matplotlib - Markers
- Matplotlib - Figures
- Matplotlib - Styles
- Matplotlib - Legends
- Matplotlib - Colors
- Matplotlib - Colormaps
- Matplotlib - Colormap Normalization
- Matplotlib - Choosing Colormaps
- Matplotlib - Colorbars
- Matplotlib - Working With Text
- Matplotlib - Text properties
- Matplotlib - Subplot Titles
- Matplotlib - Images
- Matplotlib - Image Masking
- Matplotlib - Annotations
- Matplotlib - Arrows
- Matplotlib - Fonts
- Matplotlib - Font Indexing
- Matplotlib - Font Properties
- Matplotlib - Scales
- Matplotlib - LaTeX
- Matplotlib - LaTeX Text Formatting in Annotations
- Matplotlib - PostScript
- Matplotlib - Mathematical Expressions
- Matplotlib - Animations
- Matplotlib - Celluloid Library
- Matplotlib - Blitting
- Matplotlib - Toolkits
- Matplotlib - Artists
- Matplotlib - Styling with Cycler
- Matplotlib - Paths
- Matplotlib - Path Effects
- Matplotlib - Transforms
- Matplotlib - Ticks and Tick Labels
- Matplotlib - Radian Ticks
- Matplotlib - Dateticks
- Matplotlib - Tick Formatters
- Matplotlib - Tick Locators
- Matplotlib - Basic Units
- Matplotlib - Autoscaling
- Matplotlib - Reverse Axes
- Matplotlib - Logarithmic Axes
- Matplotlib - Symlog
- Matplotlib - Unit Handling
- Matplotlib - Ellipse with Units
- Matplotlib - Spines
- Matplotlib - Axis Ranges
- Matplotlib - Axis Scales
- Matplotlib - Axis Ticks
- Matplotlib - Formatting Axes
- Matplotlib - Axes Class
- Matplotlib - Twin Axes
- Matplotlib - Figure Class
- Matplotlib - Multiplots
- Matplotlib - Grids
- Matplotlib - Object-oriented Interface
- Matplotlib - PyLab module
- Matplotlib - Subplots() Function
- Matplotlib - Subplot2grid() Function
- Matplotlib - Anchored Artists
- Matplotlib - Manual Contour
- Matplotlib - Coords Report
- Matplotlib - AGG filter
- Matplotlib - Ribbon Box
- Matplotlib - Fill Spiral
- Matplotlib - Findobj Demo
- Matplotlib - Hyperlinks
- Matplotlib - Image Thumbnail
- Matplotlib - Plotting with Keywords
- Matplotlib - Create Logo
- Matplotlib - Multipage PDF
- Matplotlib - Multiprocessing
- Matplotlib - Print Stdout
- Matplotlib - Compound Path
- Matplotlib - Sankey Class
- Matplotlib - MRI with EEG
- Matplotlib - Stylesheets
- Matplotlib - Background Colors
- Matplotlib - Basemap
- Matplotlib - Event Handling
- Matplotlib - Close Event
- Matplotlib - Mouse Move
- Matplotlib - Click Events
- Matplotlib - Scroll Event
- Matplotlib - Keypress Event
- Matplotlib - Pick Event
- Matplotlib - Looking Glass
- Matplotlib - Path Editor
- Matplotlib - Poly Editor
- Matplotlib - Timers
- Matplotlib - Viewlims
- Matplotlib - Zoom Window
- Matplotlib Widgets
- Matplotlib - Cursor Widget
- Matplotlib - Annotated Cursor
- Matplotlib - Buttons Widget
- Matplotlib - Check Buttons
- Matplotlib - Lasso Selector
- Matplotlib - Menu Widget
- Matplotlib - Mouse Cursor
- Matplotlib - Multicursor
- Matplotlib - Polygon Selector
- Matplotlib - Radio Buttons
- Matplotlib - RangeSlider
- Matplotlib - Rectangle Selector
- Matplotlib - Ellipse Selector
- Matplotlib - Slider Widget
- Matplotlib - Span Selector
- Matplotlib - Textbox
- Matplotlib Plotting
- Matplotlib - Line Plots
- Matplotlib - Area Plots
- Matplotlib - Bar Graphs
- Matplotlib - Histogram
- Matplotlib - Pie Chart
- Matplotlib - Scatter Plot
- Matplotlib - Box Plot
- Matplotlib - Arrow Demo
- Matplotlib - Fancy Boxes
- Matplotlib - Zorder Demo
- Matplotlib - Hatch Demo
- Matplotlib - Mmh Donuts
- Matplotlib - Ellipse Demo
- Matplotlib - Bezier Curve
- Matplotlib - Bubble Plots
- Matplotlib - Stacked Plots
- Matplotlib - Table Charts
- Matplotlib - Polar Charts
- Matplotlib - Hexagonal bin Plots
- Matplotlib - Violin Plot
- Matplotlib - Event Plot
- Matplotlib - Heatmap
- Matplotlib - Stairs Plots
- Matplotlib - Errorbar
- Matplotlib - Hinton Diagram
- Matplotlib - Contour Plot
- Matplotlib - Wireframe Plots
- Matplotlib - Surface Plots
- Matplotlib - Triangulations
- Matplotlib - Stream plot
- Matplotlib - Ishikawa Diagram
- Matplotlib - 3D Plotting
- Matplotlib - 3D Lines
- Matplotlib - 3D Scatter Plots
- Matplotlib - 3D Contour Plot
- Matplotlib - 3D Bar Plots
- Matplotlib - 3D Wireframe Plot
- Matplotlib - 3D Surface Plot
- Matplotlib - 3D Vignettes
- Matplotlib - 3D Volumes
- Matplotlib - 3D Voxels
- Matplotlib - Time Plots and Signals
- Matplotlib - Filled Plots
- Matplotlib - Step Plots
- Matplotlib - XKCD Style
- Matplotlib - Quiver Plot
- Matplotlib - Stem Plots
- Matplotlib - Visualizing Vectors
- Matplotlib - Audio Visualization
- Matplotlib - Audio Processing
- Matplotlib Useful Resources
- Matplotlib - Quick Guide
- Matplotlib - Cheatsheet
- Matplotlib - Useful Resources
- Matplotlib - Discussion
Matplotlib - Ishikawa Diagram
An Ishikawa diagram, also known as a fishbone diagram or cause-and-effect diagram, is a visual representation used to identify and analyze the possible causes of a specific problem or effect. The diagram looks like a fish skeleton, with the "head" representing the problem or effect, and the "bones" (branches extending from it) representing different categories of potential causes.
Imagine you work in a restaurant and customer complaints about long waiting times have increased. You can use an Ishikawa diagram to identify possible causes. The fishbone structure might include categories like "Processes," "Staff," "Equipment," and "Management." By visually mapping these factors, you can systematically analyze and address the root causes of the prolonged waiting times, leading to more improved service −

Ishikawa Diagram in Matplotlib
We can create an Ishikawa diagram in Matplotlib using a bar plot to represent the main categories (bones) and subcategories within each category. Each subcategory may contain potential causes contributing to the observed problem or effect. This diagram helps us to understand the root causes of issues in a structured way.
Now, let us learn and implement various categories and subcategories of the Ishikawa Diagram using Matplotlib.
Ishikawa Diagram - Software Development Issues
The Ishikawa diagram titled "Software Development Issues" in matplotlib is a visualization used to identify and categorize potential causes of problems within the domain of software development.
Example
In the following example, we are creating an Ishikawa diagram to represent potential causes of issues in software development. The diagram categorizes causes into People, Process, Product, and Technology. Subcategories within each category help identify specific factors that impact software development −
import matplotlib.pyplot as plt # Defining categories and subcategories for software development issues categories = ['People', 'Process', 'Product', 'Technology'] subcategories = { 'People': ['Skills', 'Team Dynamics', 'Communication'], 'Process': ['Requirements', 'Planning', 'Testing'], 'Product': ['Functionality', 'Usability', 'Performance'], 'Technology': ['Tools', 'Frameworks', 'Integration'] } # Creating a Matplotlib figure and axis fig, ax = plt.subplots(figsize=(10, 6)) # Plotting Ishikawa diagram for software development issues for i, category in enumerate(categories): ax.barh(category, 1, color='white', edgecolor='black') for j, subcategory in enumerate(subcategories[category]): ax.plot([0, 1], [i + (j + 1) / (len(subcategories[category]) + 1)] * 2, color='black') # Customizing plot appearance and displaying it ax.set_xlim(0, 1) ax.set_yticks(range(len(categories))) ax.set_yticklabels(categories) ax.set_title('Ishikawa Diagram - Software Development Issues') ax.grid(axis='x', linestyle='--', alpha=0.7) plt.show()
Output
After executing the above code, we get the following output −

Ishikawa Diagram - Manufacturing Defects
The Ishikawa Diagram titled "Manufacturing Defects" in Matplotlib is like a visual map that helps us understand why defects might happen during the manufacturing process.
Example
In here, causes of manufacturing defects are categorized into Materials, Machines, Methods, Manpower, and Measurement. Each category breaks down into subcategories, allowing a detailed analysis of potential issues contributing to defects in the manufacturing process.
For instance, It checks if materials are good quality, machines are well-maintained, methods are followed correctly, workers are skilled and not overloaded, and measurements are accurate −
import matplotlib.pyplot as plt # Defining categories and subcategories for manufacturing defects categories = ['Materials', 'Machines', 'Methods', 'Manpower', 'Measurement'] subcategories = { 'Materials': ['Quality', 'Compatibility', 'Availability'], 'Machines': ['Equipment', 'Maintenance', 'Calibration'], 'Methods': ['Procedures', 'Standards', 'Workflows'], 'Manpower': ['Skills', 'Training', 'Workload'], 'Measurement': ['Tools', 'Accuracy', 'Frequency'] } # Creating a Matplotlib figure and axis fig, ax = plt.subplots(figsize=(10, 6)) # Plotting Ishikawa diagram for manufacturing defects for i, category in enumerate(categories): ax.barh(category, 1, color='white', edgecolor='black') for j, subcategory in enumerate(subcategories[category]): ax.plot([0, 1], [i + (j + 1) / (len(subcategories[category]) + 1)] * 2, color='black') # Customizing plot appearance and show it ax.set_xlim(0, 1) ax.set_yticks(range(len(categories))) ax.set_yticklabels(categories) ax.set_title('Ishikawa Diagram - Manufacturing Defects') ax.grid(axis='x', linestyle='--', alpha=0.7) plt.show()
Output
Following is the output of the above code −

Ishikawa Diagram - Project Management Challenges
The "Project Management Challenges" Ishikawa Diagram in Matplotlib acts like a visual map to understand the potential challenges faced in project management. It is organized like a fish skeleton, with different categories such as People, Process, Tools, and Communication. Under each category, it explores specific factors such as team dynamics, planning, software tools, and communication methods.
Example
Now, we are creating the Ishikawa diagram for project management challenges, with categories and subcategories providing a structured way to analyze and address the identified challenges −
import matplotlib.pyplot as plt # Defining categories and subcategories for project management challenges categories = ['People', 'Process', 'Tools', 'Communication'] subcategories = { 'People': ['Skills', 'Team Dynamics', 'Leadership'], 'Process': ['Planning', 'Execution', 'Monitoring'], 'Tools': ['Software', 'Hardware', 'Productivity Apps'], 'Communication': ['Internal', 'External', 'Documentation'] } # Creating a Matplotlib figure and axis fig, ax = plt.subplots(figsize=(10, 6)) # Plotting Ishikawa diagram for project management challenges for i, category in enumerate(categories): ax.barh(category, 1, color='white', edgecolor='black') for j, subcategory in enumerate(subcategories[category]): ax.plot([0, 1], [i + (j + 1) / (len(subcategories[category]) + 1)] * 2, color='black') # Customizing plot appearance and show it ax.set_xlim(0, 1) ax.set_yticks(range(len(categories))) ax.set_yticklabels(categories) ax.set_title('Ishikawa Diagram - Project Management Challenges') ax.grid(axis='x', linestyle='--', alpha=0.7) plt.show()
Output
Output of the above code is as follows −

Ishikawa Diagram - Customer Service Issues
The "Customer Service Issues" Ishikawa Diagram in Matplotlib is a visual map to understand and tackle potential challenges in customer service. Resembling a fishbone, it categorizes issues into key areas: People, Process, Policies, and Technology. Within these categories, it searches specific factors like training, response time, policies, and technology usage.
Example
In the example below, we are creating the Ishikawa diagram for customer service issues as discussed above −
import matplotlib.pyplot as plt # Definng categories and subcategories for customer service issues categories = ['People', 'Process', 'Policies', 'Technology'] subcategories = { 'People': ['Training', 'Customer Interaction', 'Communication'], 'Process': ['Response Time', 'Issue Resolution', 'Feedback Handling'], 'Policies': ['Return Policies', 'Refund Procedures', 'Complaint Handling'], 'Technology': ['Software', 'Hardware', 'Communication Channels'] } # Creating a Matplotlib figure and axis fig, ax = plt.subplots(figsize=(10, 6)) # Plotting Ishikawa diagram for customer service issues for i, category in enumerate(categories): ax.barh(category, 1, color='white', edgecolor='black') for j, subcategory in enumerate(subcategories[category]): ax.plot([0, 1], [i + (j + 1) / (len(subcategories[category]) + 1)] * 2, color='black') # Customizing plot appearance and show it ax.set_xlim(0, 1) ax.set_yticks(range(len(categories))) ax.set_yticklabels(categories) ax.set_title('Ishikawa Diagram - Customer Service Issues') ax.grid(axis='x', linestyle='--', alpha=0.7) plt.show()
Output
The output obtained is as shown below −
