
- Matplotlib - Home
- Matplotlib - Introduction
- Matplotlib - Vs Seaborn
- Matplotlib - Environment Setup
- Matplotlib - Anaconda distribution
- Matplotlib - Jupyter Notebook
- Matplotlib - Pyplot API
- Matplotlib - Simple Plot
- Matplotlib - Saving Figures
- Matplotlib - Markers
- Matplotlib - Figures
- Matplotlib - Styles
- Matplotlib - Legends
- Matplotlib - Colors
- Matplotlib - Colormaps
- Matplotlib - Colormap Normalization
- Matplotlib - Choosing Colormaps
- Matplotlib - Colorbars
- Matplotlib - Working With Text
- Matplotlib - Text properties
- Matplotlib - Subplot Titles
- Matplotlib - Images
- Matplotlib - Image Masking
- Matplotlib - Annotations
- Matplotlib - Arrows
- Matplotlib - Fonts
- Matplotlib - Font Indexing
- Matplotlib - Font Properties
- Matplotlib - Scales
- Matplotlib - LaTeX
- Matplotlib - LaTeX Text Formatting in Annotations
- Matplotlib - PostScript
- Matplotlib - Mathematical Expressions
- Matplotlib - Animations
- Matplotlib - Celluloid Library
- Matplotlib - Blitting
- Matplotlib - Toolkits
- Matplotlib - Artists
- Matplotlib - Styling with Cycler
- Matplotlib - Paths
- Matplotlib - Path Effects
- Matplotlib - Transforms
- Matplotlib - Ticks and Tick Labels
- Matplotlib - Radian Ticks
- Matplotlib - Dateticks
- Matplotlib - Tick Formatters
- Matplotlib - Tick Locators
- Matplotlib - Basic Units
- Matplotlib - Autoscaling
- Matplotlib - Reverse Axes
- Matplotlib - Logarithmic Axes
- Matplotlib - Symlog
- Matplotlib - Unit Handling
- Matplotlib - Ellipse with Units
- Matplotlib - Spines
- Matplotlib - Axis Ranges
- Matplotlib - Axis Scales
- Matplotlib - Axis Ticks
- Matplotlib - Formatting Axes
- Matplotlib - Axes Class
- Matplotlib - Twin Axes
- Matplotlib - Figure Class
- Matplotlib - Multiplots
- Matplotlib - Grids
- Matplotlib - Object-oriented Interface
- Matplotlib - PyLab module
- Matplotlib - Subplots() Function
- Matplotlib - Subplot2grid() Function
- Matplotlib - Anchored Artists
- Matplotlib - Manual Contour
- Matplotlib - Coords Report
- Matplotlib - AGG filter
- Matplotlib - Ribbon Box
- Matplotlib - Fill Spiral
- Matplotlib - Findobj Demo
- Matplotlib - Hyperlinks
- Matplotlib - Image Thumbnail
- Matplotlib - Plotting with Keywords
- Matplotlib - Create Logo
- Matplotlib - Multipage PDF
- Matplotlib - Multiprocessing
- Matplotlib - Print Stdout
- Matplotlib - Compound Path
- Matplotlib - Sankey Class
- Matplotlib - MRI with EEG
- Matplotlib - Stylesheets
- Matplotlib - Background Colors
- Matplotlib - Basemap
- Matplotlib - Event Handling
- Matplotlib - Close Event
- Matplotlib - Mouse Move
- Matplotlib - Click Events
- Matplotlib - Scroll Event
- Matplotlib - Keypress Event
- Matplotlib - Pick Event
- Matplotlib - Looking Glass
- Matplotlib - Path Editor
- Matplotlib - Poly Editor
- Matplotlib - Timers
- Matplotlib - Viewlims
- Matplotlib - Zoom Window
- Matplotlib Widgets
- Matplotlib - Cursor Widget
- Matplotlib - Annotated Cursor
- Matplotlib - Buttons Widget
- Matplotlib - Check Buttons
- Matplotlib - Lasso Selector
- Matplotlib - Menu Widget
- Matplotlib - Mouse Cursor
- Matplotlib - Multicursor
- Matplotlib - Polygon Selector
- Matplotlib - Radio Buttons
- Matplotlib - RangeSlider
- Matplotlib - Rectangle Selector
- Matplotlib - Ellipse Selector
- Matplotlib - Slider Widget
- Matplotlib - Span Selector
- Matplotlib - Textbox
- Matplotlib Plotting
- Matplotlib - Line Plots
- Matplotlib - Area Plots
- Matplotlib - Bar Graphs
- Matplotlib - Histogram
- Matplotlib - Pie Chart
- Matplotlib - Scatter Plot
- Matplotlib - Box Plot
- Matplotlib - Arrow Demo
- Matplotlib - Fancy Boxes
- Matplotlib - Zorder Demo
- Matplotlib - Hatch Demo
- Matplotlib - Mmh Donuts
- Matplotlib - Ellipse Demo
- Matplotlib - Bezier Curve
- Matplotlib - Bubble Plots
- Matplotlib - Stacked Plots
- Matplotlib - Table Charts
- Matplotlib - Polar Charts
- Matplotlib - Hexagonal bin Plots
- Matplotlib - Violin Plot
- Matplotlib - Event Plot
- Matplotlib - Heatmap
- Matplotlib - Stairs Plots
- Matplotlib - Errorbar
- Matplotlib - Hinton Diagram
- Matplotlib - Contour Plot
- Matplotlib - Wireframe Plots
- Matplotlib - Surface Plots
- Matplotlib - Triangulations
- Matplotlib - Stream plot
- Matplotlib - Ishikawa Diagram
- Matplotlib - 3D Plotting
- Matplotlib - 3D Lines
- Matplotlib - 3D Scatter Plots
- Matplotlib - 3D Contour Plot
- Matplotlib - 3D Bar Plots
- Matplotlib - 3D Wireframe Plot
- Matplotlib - 3D Surface Plot
- Matplotlib - 3D Vignettes
- Matplotlib - 3D Volumes
- Matplotlib - 3D Voxels
- Matplotlib - Time Plots and Signals
- Matplotlib - Filled Plots
- Matplotlib - Step Plots
- Matplotlib - XKCD Style
- Matplotlib - Quiver Plot
- Matplotlib - Stem Plots
- Matplotlib - Visualizing Vectors
- Matplotlib - Audio Visualization
- Matplotlib - Audio Processing
- Matplotlib Useful Resources
- Matplotlib - Quick Guide
- Matplotlib - Cheatsheet
- Matplotlib - Useful Resources
- Matplotlib - Discussion
Matplotlib - Audio Processing
Audio processing is the technology that helps computers understand and work with sound. It involves using computers to manipulate, enhance, or analyze sounds. Think of it as a magical toolbox for making music, fixing noisy recordings, or even recognizing your voice commands when you talk to your phone or smart speaker.
So, audio processing is like a wizard that helps make sounds better and more useful in our digital world. It contains a range of techniques and methods for modifying, enhancing, or extracting information from audio signals.
For instance, we can perform time-frequency analysis on audio data. This analysis helps us understand how the frequency content of the audio signal changes over time. To achieve this, we need to create a spectrogram, which is a visual representation of the frequencies in the audio signal as it evolves over time.
The x-axis represents time, the y-axis represents frequency, and the color intensity represents the strength of each frequency component at a given time. By plotting the spectrogram, we can identify patterns, trends, and changes in the audio signal's frequency content, which is useful for tasks like detecting sound events or analyzing musical compositions −

Audio Processing in Matplotlib
In Matplotlib, audio processing refers to the manipulation and visualization of audio data. While Matplotlib is primarily known for creating visualizations like charts and graphs, it can also be used to visualize audio signals.
For example, you can use Matplotlib to generate spectrograms, which provide a visual representation of the frequency content of an audio signal over time. Matplotlib does not have built-in functionalities for audio processing. However, you can use it in conjunction with other libraries such as NumPy, SciPy, and librosa to perform audio processing tasks, including filtering, spectral analysis, and signal transformations.
Below are different examples showing the use of Matplotlib with these libraries for basic audio processing and visualization tasks
Audio Processing: Waveform Visualization
In Matplotlib, audio processing waveform visualization involves plotting the amplitude of audio signals over time. When audio data is loaded into Matplotlib, you can use its plotting functions to create a graphical representation of the waveform.
Each point on the plot represents the amplitude of the audio signal at a specific moment in time, and the waveform shows how the signal changes over the duration of the audio clip. This visualization helps users understand the characteristics of the audio, such as its volume and frequency components, and is commonly used in audio analysis and editing applications.
Example
In the following example, we visualize the waveform of an audio signal using the plot() function. The x-axis represents time in seconds, and the y-axis represents the amplitude of the audio signal, with amplitude values plotted against time −
import matplotlib.pyplot as plt import numpy as np # Assuming audio_data is a numpy array containing audio samples audio_data = np.random.randn(10000) # Plotting the audio waveform plt.plot(np.arange(len(audio_data)), audio_data) plt.xlabel('Sample') plt.ylabel('Amplitude') plt.title('Audio Waveform') # Displaying the plot plt.show()
Output
Following is the output of the above code −

Audio Processing: Spectrogram
Spectrograms are used to understand the frequency content of audio signals, identify patterns or changes in sound over time, and analyze the characteristics of audio recordings.
In Matplotlib, an audio processing spectrogram is a visual representation of the frequencies and intensities present in an audio signal over time. It is like taking a snapshot of the frequencies present in different parts of the audio clip as it plays.
The spectrogram displays time on the x-axis, frequency on the y-axis, and the intensity of each frequency at a given moment as a color. Brighter colors typically represent higher intensities or amplitudes of frequencies, while darker colors represent lower intensities.
Example
In this example, we are using the specgram() function to generate and display the spectrogram of the audio signal. The x-axis represents time in seconds, the y-axis represents frequency in Hertz, and the color intensity represents the intensity of each frequency component at different points in time −
import matplotlib.pyplot as plt import numpy as np # Generating random audio data # Sample rate in Hz sample_rate = 44100 # Duration of the audio in seconds duration = 5 # Creating a time array representing the time axis of the audio data t = np.linspace(0, duration, int(sample_rate * duration)) # Generating audio data # by creating a sine wave at 440 Hz frequency audio_data = np.sin(2 * np.pi * 440 * t) # Plotting the spectrogram of the audio data plt.specgram(audio_data, Fs=sample_rate) plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Spectrogram') # Adding a color bar to indicate intensity in decibels plt.colorbar(label='Intensity (dB)') # Displaying the plot plt.show()
Output
Following is the output of the above code −

Audio Processing: Frequency Spectrum
In Matplotlib, an audio processing frequency spectrum represents the distribution of frequencies present in an audio signal. It is like breaking down the sound into its individual frequency components to see how much of each frequency is present.
The frequency spectrum plot shows frequency on the x-axis and the intensity or amplitude of each frequency on the y-axis. Peaks or spikes in the plot indicate frequencies that are particularly strong or dominant in the audio signal.
This visualization helps to understand the composition of the audio, such as the pitch of the sound, the presence of different musical notes or tones, and any background noise or interference.
Example
In here, we are using the magnitude_spectrum() function to calculate and display the frequency spectrum of the audio signal. The x-axis represents frequency in Hertz, and the y-axis represents the magnitude of each frequency component −
import matplotlib.pyplot as plt import numpy as np # Assuming audio_data is a numpy array containing audio samples # Providing random audio data audio_data = np.random.randn(10000) # sample rate sample_rate = 44100 # Plotting the magnitude spectrum of the audio data plt.magnitude_spectrum(audio_data, Fs=sample_rate) plt.xlabel('Frequency (Hz)') plt.ylabel('Magnitude') plt.title('Frequency Spectrum') # Displaying the plot plt.show()
Output
Following is the output of the above code −
