
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Use pnorm Function on Data Frame Columns in R
The pnorm function is used to find the probability for a normally distributed random variable. Probabilities such as less than mean, greater than mean, or probability between left- and right-hand side of the mean. If we want to use pnorm function on data frame columns then apply function can help us.
Consider the below data frame −
Example
x1<-rnorm(20,5,0.35) x2<-rnorm(20,5,0.67) x3<-rnorm(20,5,0.04) df1<-data.frame(x1,x2,x3) df1
Output
x1 x2 x3 1 4.556392 5.973934 5.018973 2 5.217397 4.932053 4.975870 3 5.426464 4.932799 4.962231 4 4.930645 5.297919 5.017925 5 4.773804 4.768619 4.943131 6 4.963782 4.569909 4.950701 7 4.925481 5.329717 4.985630 8 4.940240 5.871122 5.007031 9 4.904643 5.270739 5.022102 10 4.652542 5.784937 5.005462 11 5.089297 4.479673 4.961000 12 5.619575 4.181733 4.983067 13 4.696906 4.451156 4.931908 14 5.177524 4.422826 5.052467 15 5.186783 5.184310 5.015104 16 4.497172 5.241887 4.996715 17 4.689212 5.252937 5.035001 18 5.385772 4.095684 5.035014 19 5.455497 5.142272 5.021073 20 5.417301 5.025720 5.005374
Applying pnorm on columns in df1 −
Example
apply(df1,2,function(x) pnorm(x,mean=mean(x),sd=sd(x)))
Output
x1 x2 x3 [1,] 0.07616627 0.96450889 0.75138999 [2,] 0.72115750 0.44156102 0.27056837 [3,] 0.88960525 0.44211276 0.15403922 [4,] 0.38629544 0.70493965 0.74135388 [5,] 0.22132609 0.32516348 0.05581552 [6,] 0.42550072 0.20448316 0.08623025 [7,] 0.38027932 0.72516490 0.37486428 [8,] 0.39754810 0.94661794 0.62607863 [9,] 0.35630529 0.68712704 0.78009609 [10,] 0.12759048 0.92666438 0.60816173 [11,] 0.57741133 0.15991056 0.14545675 [12,] 0.96515143 0.06018775 0.34616630 [13,] 0.15806523 0.14725726 0.02700442 [14,] 0.67888286 0.13536904 0.95364621 [15,] 0.68893707 0.62769115 0.71330952 [16,] 0.05346986 0.66772918 0.50508628 [17,] 0.15246286 0.67521495 0.87668128 [18,] 0.86438253 0.04322155 0.87676402 [19,] 0.90541682 0.59753060 0.77087289 [20,] 0.88424194 0.51137989 0.60714737
Example
y1<-rpois(20,5) y2<-rpois(20,2) y3<-rpois(20,2) y4<-rpois(20,5) y5<-rpois(20,10) df2<-data.frame(y1,y2,y3,y4,y5) df2
Output
y1 y2 y3 y4 y5 1 7 4 3 3 10 2 7 2 2 5 6 3 2 1 4 4 11 4 5 1 2 6 13 5 6 2 3 9 10 6 7 4 4 4 7 7 5 3 2 7 15 8 2 1 1 3 15 9 3 1 2 4 9 10 4 3 1 4 15 11 1 4 4 4 13 12 5 6 4 8 9 13 3 0 5 2 14 14 7 2 1 8 7 15 6 3 4 5 10 16 3 2 2 6 19 17 4 1 5 5 11 18 7 2 1 5 11 19 6 1 2 9 9 20 3 3 4 3 9
Applying pnorm on columns in df2 −
Example
apply(df2,2,function(x) pnorm(x,mean=mean(x),sd=sd(x)))
Output
y1 y2 y3 y4 y5 [1,] 0.88543697 0.87874297 0.55840970 0.14362005 0.36298572 [2,] 0.88543697 0.41829947 0.27834877 0.46146443 0.05825608 [3,] 0.08752759 0.18573275 0.81101173 0.28079874 0.48176830 [4,] 0.57107536 0.18573275 0.27834877 0.65061458 0.71356535 [5,] 0.75517414 0.41829947 0.55840970 0.96698029 0.36298572 [6,] 0.88543697 0.87874297 0.81101173 0.28079874 0.10296979 [7,] 0.57107536 0.68482707 0.27834877 0.80804251 0.87967779 [8,] 0.08752759 0.18573275 0.09300983 0.14362005 0.87967779 [9,] 0.19922632 0.18573275 0.27834877 0.28079874 0.25614928 [10,] 0.36970390 0.68482707 0.09300983 0.28079874 0.87967779 [11,] 0.03088880 0.87874297 0.81101173 0.28079874 0.71356535 [12,] 0.57107536 0.99451570 0.81101173 0.91220051 0.25614928 [13,] 0.19922632 0.05691416 0.94698775 0.06082067 0.80746817 [14,] 0.88543697 0.41829947 0.09300983 0.91220051 0.10296979 [15,] 0.75517414 0.68482707 0.81101173 0.46146443 0.36298572 [16,] 0.19922632 0.41829947 0.27834877 0.65061458 0.99163233 [17,] 0.36970390 0.18573275 0.94698775 0.46146443 0.48176830 [18,] 0.88543697 0.41829947 0.09300983 0.46146443 0.48176830 [19,] 0.75517414 0.18573275 0.27834877 0.96698029 0.25614928 [20,] 0.19922632 0.68482707 0.81101173 0.14362005 0.25614928
Advertisements