
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find Row Mean for Columns in R Data Frame Ignoring Missing Values
To find the row mean for columns by ignoring missing values, we would need to use rowMeans function with na.rm. For example, if we have a data frame called df that contains five columns and some of the values are missing then the row means will be calculated by using the command: rowMeans(df,na.rm=TRUE).
Consider the below data frame −
Example
x1<-sample(c(NA,rpois(4,5)),20,replace=TRUE) x2<-sample(c(NA,rpois(4,5)),20,replace=TRUE) df1<-data.frame(x1,x2) df1
Output
x1 x2 1 NA 2 2 7 9 3 5 8 4 7 NA 5 NA 8 6 7 8 7 5 2 8 5 NA 9 5 6 10 NA 8 11 7 8 12 5 9 13 5 9 14 NA 9 15 5 6 16 5 NA 17 5 9 18 7 9 19 7 9 20 NA NA
Finding the row means for rows in df1 −
Example
df1$RowMeans<-rowMeans(df1,na.rm=TRUE) df1
Output
x1 x2 RowMeans 1 NA 2 2.0 2 7 9 8.0 3 5 8 6.5 4 7 NA 7.0 5 NA 8 8.0 6 7 8 7.5 7 5 2 3.5 8 5 NA 5.0 9 5 6 5.5 10 NA 8 8.0 11 7 8 7.5 12 5 9 7.0 13 5 9 7.0 14 NA 9 9.0 15 5 6 5.5 16 5 NA 5.0 17 5 9 7.0 18 7 9 8.0 19 7 9 8.0 20 NA NA NaN
Example
y1<-sample(c(NA,rnorm(5)),20,replace=TRUE) y2<-sample(c(NA,rnorm(5)),20,replace=TRUE) df2<-data.frame(y1,y2) df2
Output
y1 y2 1 0.5896447 1.8711656 2 0.9310379 1.1159848 3 2.9883385 0.6290764 4 NA -0.6323118 5 1.4797316 NA 6 2.9883385 -0.1533375 7 0.9310379 1.8711656 8 -0.1495998 0.6290764 9 0.5896447 1.8711656 10 0.5896447 NA 11 2.9883385 -0.1533375 12 0.5896447 -0.6323118 13 2.9883385 0.6290764 14 -0.1495998 1.8711656 15 1.4797316 1.8711656 16 -0.1495998 -0.6323118 17 -0.1495998 0.6290764 18 2.9883385 -0.6323118 19 2.9883385 -0.1533375 20 2.9883385 -0.1533375
Finding the row means for rows in df2 −
Example
df2$RowMeans<-rowMeans(df2,na.rm=TRUE) df2
Output
y1 y2 RowMeans 1 0.5896447 1.8711656 1.23040515 2 0.9310379 1.1159848 1.02351135 3 2.9883385 0.6290764 1.80870743 4 NA -0.6323118 -0.63231175 5 1.4797316 NA 1.47973158 6 2.9883385 -0.1533375 1.41750051 7 0.9310379 1.8711656 1.40110175 8 -0.1495998 0.6290764 0.23973829 9 0.5896447 1.8711656 1.23040515 10 0.5896447 NA 0.58964468 11 2.9883385 -0.1533375 1.41750051 12 0.5896447 -0.6323118 -0.02133354 13 2.9883385 0.6290764 1.80870743 14 -0.1495998 1.8711656 0.86078292 15 1.4797316 1.8711656 1.67544859 16 -0.1495998 -0.6323118 -0.39095576 17 -0.1495998 0.6290764 0.23973829 18 2.9883385 -0.6323118 1.17801337 19 2.9883385 -0.1533375 1.41750051 20 2.9883385 -0.1533375 1.41750051
Advertisements