
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Create Only Interaction Regression Model in R
Mostly, we start with creating models by including single independent variables effect on the dependent variable and then move on to interaction. But if we are sure that there exists some interaction among variables and we are looking for the interaction effect then only interaction regression model can be created. This can be done by using colon sign between variables to signify the interaction as shown in the below examples.
Example1
Consider the below data frame:
> x1<-rpois(20,1) > x2<-rpois(20,2) > x3<-rpois(20,5) > y<-rpois(20,10) > df1<-data.frame(x1,x2,x3,y) > df1
Output
x1 x2 x3 y 1 1 3 10 8 2 0 3 9 11 3 1 1 6 5 4 1 1 2 8 5 3 3 5 5 6 0 2 5 10 7 0 1 4 14 8 0 0 0 8 9 1 4 4 7 10 2 3 5 8 11 2 2 6 5 12 1 0 6 11 13 1 2 7 7 14 0 1 3 7 15 2 2 3 5 16 1 1 6 13 17 3 0 5 6 18 0 2 6 8 19 1 1 2 8 20 0 1 7 10
Creating regression model with only interaction of variables:
Example
> Model1<-lm(y~x1:x2+x1:x3+x2:x3,data=df1) > summary(Model1)
Output
Call: lm(formula = y ~ x1:x2 + x1:x3 + x2:x3, data = df1) Residuals: Min 1Q Median 3Q Max -3.2093 -1.2583 -0.6080 0.5682 4.7907 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.19978 0.90379 10.179 2.14e-08 *** x1:x2 -0.39247 0.30978 -1.267 0.223 x1:x3 -0.14849 0.13996 -1.061 0.304 x2:x3 0.04883 0.06907 0.707 0.490 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.323 on 16 degrees of freedom Multiple R-squared: 0.3316, Adjusted R-squared: 0.2063 F-statistic: 2.646 on 3 and 16 DF, p-value: 0.08444
Example2
> IV_1<-rnorm(20,5,1) > IV_2<-rnorm(20,5,0.98) > IV_3<-rnorm(20,20,3.25) > D<-rnorm(20,1,0.004) > df2<-data.frame(IV_1,IV_2,IV_3,D) > df2
Output
IV_1 IV_2 IV_3 D 1 3.827016 4.760877 17.64892 0.9960714 2 4.623803 5.152936 21.48162 1.0013076 3 5.783128 5.100011 16.10671 1.0017913 4 5.991171 4.718291 13.44091 1.0047349 5 5.229284 4.712669 22.01410 0.9996455 6 5.336851 5.460088 19.56821 1.0045880 7 4.352768 4.350663 18.58638 1.0003473 8 4.556793 2.853435 18.30430 0.9988200 9 6.161752 5.003778 23.22494 1.0020493 10 5.065051 5.845684 16.47238 1.0011333 11 4.317532 5.960619 23.11946 1.0015382 12 6.634342 4.714110 16.62322 1.0040192 13 4.415151 4.940207 19.55201 0.9988561 14 6.129936 6.481631 19.30220 0.9990506 15 5.581201 4.369263 21.86459 0.9991853 16 5.379293 4.871669 14.22654 1.0042899 17 4.689259 5.475507 19.16673 1.0078011 18 5.886390 4.367721 19.54971 1.0038578 19 3.358135 4.545323 21.81248 1.0041536 20 4.011436 5.555905 23.64763 1.0070755
Example
> Model2<-lm(D~IV_1:IV_2+IV_1:IV_3+IV_2:IV_3+IV_1:IV_2:IV_3,data=df2) > summary(Model2)
Output
Call: lm(formula = D ~ IV_1:IV_2 + IV_1:IV_3 + IV_2:IV_3 + IV_1:IV_2:IV_3, data = df2) Residuals: Min 1Q Median 3Q Max -0.0037361 -0.0021382 -0.0000464 0.0019465 0.0054880 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.516e-01 1.914e-02 49.720 <2e-16 *** IV_1:IV_2 1.981e-03 7.314e-04 2.709 0.0162 * IV_1:IV_3 4.910e-04 2.055e-04 2.389 0.0305 * IV_2:IV_3 5.106e-04 1.925e-04 2.652 0.0181 * IV_1:IV_2:IV_3 -1.989e-04 7.677e-05 -2.590 0.0205 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.002737 on 15 degrees of freedom Multiple R-squared: 0.3487, Adjusted R-squared: 0.175 F-statistic: 2.008 on 4 and 15 DF, p-value: 0.1451
Advertisements