
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- DSA - Skip List Data Structure
- Linked Lists
- DSA - Linked List Data Structure
- DSA - Doubly Linked List Data Structure
- DSA - Circular Linked List Data Structure
- Stack & Queue
- DSA - Stack Data Structure
- DSA - Expression Parsing
- DSA - Queue Data Structure
- DSA - Circular Queue Data Structure
- DSA - Priority Queue Data Structure
- DSA - Deque Data Structure
- Searching Algorithms
- DSA - Searching Algorithms
- DSA - Linear Search Algorithm
- DSA - Binary Search Algorithm
- DSA - Interpolation Search
- DSA - Jump Search Algorithm
- DSA - Exponential Search
- DSA - Fibonacci Search
- DSA - Sublist Search
- DSA - Hash Table
- Sorting Algorithms
- DSA - Sorting Algorithms
- DSA - Bubble Sort Algorithm
- DSA - Insertion Sort Algorithm
- DSA - Selection Sort Algorithm
- DSA - Merge Sort Algorithm
- DSA - Shell Sort Algorithm
- DSA - Heap Sort Algorithm
- DSA - Bucket Sort Algorithm
- DSA - Counting Sort Algorithm
- DSA - Radix Sort Algorithm
- DSA - Quick Sort Algorithm
- Matrices Data Structure
- DSA - Matrices Data Structure
- DSA - Lup Decomposition In Matrices
- DSA - Lu Decomposition In Matrices
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- DSA - Spanning Tree
- DSA - Topological Sorting
- DSA - Strongly Connected Components
- DSA - Biconnected Components
- DSA - Augmenting Path
- DSA - Network Flow Problems
- DSA - Flow Networks In Data Structures
- DSA - Edmonds Blossom Algorithm
- DSA - Maxflow Mincut Theorem
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Range Queries
- DSA - Segment Trees
- DSA - Fenwick Tree
- DSA - Fusion Tree
- DSA - Hashed Array Tree
- DSA - K-Ary Tree
- DSA - Kd Trees
- DSA - Priority Search Tree Data Structure
- Recursion
- DSA - Recursion Algorithms
- DSA - Tower of Hanoi Using Recursion
- DSA - Fibonacci Series Using Recursion
- Divide and Conquer
- DSA - Divide and Conquer
- DSA - Max-Min Problem
- DSA - Strassen's Matrix Multiplication
- DSA - Karatsuba Algorithm
- Greedy Algorithms
- DSA - Greedy Algorithms
- DSA - Travelling Salesman Problem (Greedy Approach)
- DSA - Prim's Minimal Spanning Tree
- DSA - Kruskal's Minimal Spanning Tree
- DSA - Dijkstra's Shortest Path Algorithm
- DSA - Map Colouring Algorithm
- DSA - Fractional Knapsack Problem
- DSA - Job Sequencing with Deadline
- DSA - Optimal Merge Pattern Algorithm
- Dynamic Programming
- DSA - Dynamic Programming
- DSA - Matrix Chain Multiplication
- DSA - Floyd Warshall Algorithm
- DSA - 0-1 Knapsack Problem
- DSA - Longest Common Sub-sequence Algorithm
- DSA - Travelling Salesman Problem (Dynamic Approach)
- Hashing
- DSA - Hashing Data Structure
- DSA - Collision In Hashing
- Disjoint Set
- DSA - Disjoint Set
- DSA - Path Compression And Union By Rank
- Heap
- DSA - Heap Data Structure
- DSA - Binary Heap
- DSA - Binomial Heap
- DSA - Fibonacci Heap
- Tries Data Structure
- DSA - Tries
- DSA - Standard Tries
- DSA - Compressed Tries
- DSA - Suffix Tries
- Treaps
- DSA - Treaps Data Structure
- Bit Mask
- DSA - Bit Mask In Data Structures
- Bloom Filter
- DSA - Bloom Filter Data Structure
- Approximation Algorithms
- DSA - Approximation Algorithms
- DSA - Vertex Cover Algorithm
- DSA - Set Cover Problem
- DSA - Travelling Salesman Problem (Approximation Approach)
- Randomized Algorithms
- DSA - Randomized Algorithms
- DSA - Randomized Quick Sort Algorithm
- DSA - Karger’s Minimum Cut Algorithm
- DSA - Fisher-Yates Shuffle Algorithm
- Miscellaneous
- DSA - Infix to Postfix
- DSA - Bellmon Ford Shortest Path
- DSA - Maximum Bipartite Matching
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Selection Sort Interview Questions
- DSA - Merge Sort Interview Questions
- DSA - Insertion Sort Interview Questions
- DSA - Heap Sort Interview Questions
- DSA - Bubble Sort Interview Questions
- DSA - Bucket Sort Interview Questions
- DSA - Radix Sort Interview Questions
- DSA - Cycle Sort Interview Questions
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
LU Decomposition in Matrices
LU Decomposition in Matrices is a method of decomposing a square matrix into two matrices, one of which is a lower triangular matrix and the other is an upper triangular matrix.
The LU decomposition is used in numerical analysis to solve systems of linear equations.
The LU decomposition is also used in the solution of linear systems of equations, the calculation of the determinant of a matrix, and the calculation of the inverse of a matrix.
What is LU Decomposition in Data Structures?
In data structures, LU decomposition means splitting a square matrix A into two smaller matrices:
L - Lower triangular matrix
U - Upper triangular matrix
This decomposition helps in efficient computation of the determinant and inverse of a matrix.
Why LU Decomposition is Important?
It simplifies the process of solving linear equations and calculating the determinant and inverse of a matrix by breaking down the original matrix into two simpler matrices.
Imagine you have a project where you have to build a feature that require solving linear equations and you don't want it to be complex. In this case, you can use LU decomposition to simplify the process. It means you can solve the same equations with less effort and complexity by breaking down the matrix into two simpler matrices.
LU Decomposition Algorithm
The LU decomposition algorithm is as follows:
1. Read the matrix A 2. Set the size of the matrix A as n x n 3. Initialize the matrices L and U as n x n matrices 4. Set the diagonal elements of L as 1 and the other elements as 0 5. Set the elements of U as the elements of A 6. For k = 1 to n-1 7. For i = k+1 to n 8. Set L[i][k] = U[i][k]/U[k][k] 9. For j = k to n 10. Set U[i][j] = U[i][j] - L[i][k]*U[k][j] 11. Display the matrices L and U
LU Decomposition Example
Let's consider a 3x3 matrix A. We will perform LU decomposition on this matrix. Following is the example, using Java, CPP, C and Python programming languages.
//C Program to perform LU Decomposition #include <stdio.h> int main(){ int n = 3; float A[3][3] = {{2, -1, -2}, {-4, 6, 3}, {-4, -2, 8}}; float L[3][3], U[3][3]; int i, j, k; for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ if(i > j){ U[i][j] = 0; L[i][j] = A[i][j]; } else if(i == j){ L[i][j] = 1; U[i][j] = A[i][j]; } else{ L[i][j] = 0; U[i][j] = A[i][j]; } } } for(k = 0; k < n; k++){ for(i = k + 1; i < n; i++){ L[i][k] = U[i][k] / U[k][k]; for(j = k; j < n; j++){ U[i][j] = U[i][j] - L[i][k] * U[k][j]; } } } printf("L Matrix\n"); for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ printf("%f ", L[i][j]); } printf("\n"); } printf("U Matrix\n"); for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ printf("%f ", U[i][j]); } printf("\n"); } return 0; }
Output
The output obtained is as follows −
L Matrix 1.000000 0.000000 0.000000 -2.000000 1.000000 0.000000 -2.000000 1.000000 1.000000 U Matrix 2.000000 -1.000000 -2.000000 0.000000 4.000000 7.000000 0.000000 0.000000 1.000000
//CPP Program #include <iostream> using namespace std; int main(){ int n = 3; float A[3][3] = {{2, -1, -2}, {-4, 6, 3}, {-4, -2, 8}}; float L[3][3], U[3][3]; int i, j, k; for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ if(i > j){ U[i][j] = 0; L[i][j] = A[i][j]; } else if(i == j){ L[i][j] = 1; U[i][j] = A[i][j]; } else{ L[i][j] = 0; U[i][j] = A[i][j]; } } } for(k = 0; k < n; k++){ for(i = k + 1; i < n; i++){ L[i][k] = U[i][k] / U[k][k]; for(j = k; j < n; j++){ U[i][j] = U[i][j] - L[i][k] * U[k][j]; } } } cout << "L Matrix" << endl; for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ cout << L[i][j] << " "; } cout << endl; } cout << "U Matrix" << endl; for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ cout << U[i][j] << " "; } cout << endl; } return 0; }
Output
The output produced is as follows −
L Matrix 1 0 0 0 1 0 0 0 1 U Matrix 2 -1 -2 0 6 3 0 0 8
//java Program public class Main{ public static void main(String[] args){ int n = 3; float A[][] = {{2, -1, -2}, {-4, 6, 3}, {-4, -2, 8}}; float L[][] = new float[3][3]; float U[][] = new float[3][3]; int i, j, k; for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ if(i > j){ U[i][j] = 0; L[i][j] = A[i][j]; } else if(i == j){ L[i][j] = 1; U[i][j] = A[i][j]; } else{ L[i][j] = 0; U[i][j] = A[i][j]; } } } for(k = 0; k < n; k++){ for(i = k + 1; i < n; i++){ L[i][k] = U[i][k] / U[k][k]; for(j = k; j < n; j++){ U[i][j] = U[i][j] - L[i][k] * U[k][j]; } } } System.out.println("L Matrix"); for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ System.out.print(L[i][j] + " "); } System.out.println(); } System.out.println("U Matrix"); for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ System.out.print(U[i][j] + " "); } System.out.println(); } } }
Output
The output obtained is as shown below −
L Matrix 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 U Matrix 2.0 -1.0 -2.0 0.0 6.0 3.0 0.0 0.0 8.0
def main(): n = 3 A = [[2, -1, -2], [-4, 6, 3], [-4, -2, 8]] L = [[0 for i in range(n)] for j in range(n)] U = [[0 for i in range(n)] for j in range(n)] for i in range(n): for j in range(n): if i > j: U[i][j] = 0 L[i][j] = A[i][j] elif i == j: L[i][j] = 1 U[i][j] = A[i][j] else: L[i][j] = 0 U[i][j] = A[i][j] for k in range(n): for i in range(k + 1, n): L[i][k] = U[i][k] / U[k][k] for j in range(k, n): U[i][j] = U[i][j] - L[i][k] * U[k][j] print("L Matrix") for i in range(n): for j in range(n): print(L[i][j], end = " ") print() print("U Matrix") for i in range(n): for j in range(n): print(U[i][j], end = " ") print() main()
Output
Following is the output of the above code −
L Matrix 1 0 0 0.0 1 0 0.0 0.0 1 U Matrix 2 -1 -2 0.0 6.0 3.0 0.0 0.0 8.0
Applications of LU Decomposition
LU decomposition is used in various applications, such as:
- Solving systems of linear equations
- Calculating the determinant of a matrix
- Calculating the inverse of a matrix
LU decomposition is also used in numerical analysis, scientific computing, and engineering to solve complex problems.
Conclusion
In this chapter, we learned about LU decomposition in matrices. We discussed the importance of LU decomposition in data structures and its applications in solving linear equations, calculating the determinant and inverse of a matrix. We also saw the LU decomposition algorithm and an example of LU decomposition in a 3x3 matrix using different programming languages.