
- Data Comm & Networks Home
- DCN - Overview
- DCN - What is Computer Network
- DCN - Uses of Computer Network
- DCN - Computer Network Types
- DCN - Network LAN Technologies
- DCN - Computer Network Models
- DCN - Computer Network Security
- DCN - Components
- DCN - Connectors
- DCN - Switches
- DCN - Repeaters
- DCN - Gateways
- DCN - Bridges
- DCN - Socket
- DCN - Network Interface Card
- DCN - NIC: Pros and Cons
- DCN - Network Hardware
- DCN - Network Port
- Computer Network Topologies
- DCN - Computer Network Topologies
- DCN - Point-to-point Topology
- DCN - Bus Topology
- DCN - Star Topology
- DCN - Ring Topology
- DCN - Mesh Topology
- DCN - Tree Topology
- DCN - Hybrid Topology
- Physical Layer
- DCN - Physical Layer Introduction
- DCN - Digital Transmission
- DCN - Analog Transmission
- DCN - Transmission media
- DCN - Wireless Transmission
- DCN - Transmission Impairments
- DCN - Multiplexing
- DCN - Network Switching
- Data Link Layer
- DCN - Data Link Layer Introduction
- DCN - Data Link Control & Protocols
- DCN - RMON
- DCN - Token Ring Network
- DCN - Hamming Code
- DCN - Byte Stuffing
- DCN - Channel Allocation
- DCN - MAC Address
- DCN - Cyclic Redundancy Checks
- DCN - Error Control
- DCN - Flow Control
- DCN - Framing
- DCN - Error Detection & Correction
- DCN - Error Correcting Codes
- DCN - Parity Bits
- Network Layer
- DCN - Network Layer Introduction
- DCN - Network Addressing
- DCN - Routing
- DCN - Internetworking
- DCN - Network Layer Protocols
- DCN - Routing Information Protocol
- DCN - Border Gateway Protocol
- DCN - OSPF Protocol
- DCN - Network Address Translation
- DCN - Network Address Translation Types
- Transport Layer
- DCN - Transport Layer Introduction
- DCN - Transmission Control Protocol
- DCN - User Datagram Protocol
- DCN - Congestion Control
- DCN - TCP Service Model
- DCN - TLS Handshake
- DCN - TCP Vs. UDP
- Application Layer
- DCN - Application Layer Introduction
- DCN - Client-Server Model
- DCN - Application Protocols
- DCN - Network Services
- DCN - Virtual Private Network
- DCN - Load Shedding
- DCN - Optimality Principle
- DCN - Service Primitives
- DCN - Services of Network Security
- DCN - Hypertext Transfer Protocol
- DCN - File Transfer Protocol
- DCN - Secure Socket Layer
- Network Protocols
- DCN - ALOHA Protocol
- DCN - Pure ALOHA Protocol
- DCN - Sliding Window Protocol
- DCN - Stop and Wait Protocol
- DCN - Link State Routing
- DCN - Link State Routing Protocol
- Network Algorithms
- DCN - Shortest Path Algorithm
- DCN - Routing Algorithm
- DCN - Leaky Bucket Algorithm
- Wireless Networks
- DCN - Wireless Networks
- DCN - Wireless LANs
- DCN - Wireless LAN & IEEE 802.11
- DCN - IEEE 802.11 Wireless LAN Standards
- DCN - IEEE 802.11 Networks
- Multiplexing
- DCN - Multiplexing & Its Types
- DCN - Time Division Multiplexing
- DCN - Synchronous TDM
- DCN - Asynchronous TDM
- DCN - Synchronous Vs. Asynchronous TDM
- DCN - Frequency Division Multiplexing
- DCN - TDM Vs. FDM
- DCN - Code Division Multiplexing
- DCN - Wavelength Division Multiplexing
- Miscellaneous
- DCN - Shortest Path Routing
- DCN - B-ISDN Reference Model
- DCN - Design Issues For Layers
- DCN - Selective-repeat ARQ
- DCN - Flooding
- DCN - E-Mail Format
- DCN - Cryptography
- DCN - Unicast, Broadcast, & Multicast
- DCN - Network Virtualization
- DCN - Flow Vs. Congestion Control
- DCN - Asynchronous Transfer Mode
- DCN - ATM Networks
- DCN - Synchronous Vs. Asynchronous Transmission
- DCN - Network Attacks
- DCN - WiMax
- DCN - Buffering
- DCN - Authentication
- DCN Useful Resources
- DCN - Quick Guide
- DCN - Useful Resources
Code Division Multiplexing
Code division multiplexing (CDM) is a multiplexing technique that uses spread spectrum communication. In spread spectrum communications, a narrowband signal is spread over a larger band of frequency or across multiple channels via division. It does not constrict bandwidths digital signals or frequencies. It is less susceptible to interference, thus providing better data communication capability and a more secure private line.
Code Division Multiple Access
When CDM is used to allow multiple signals from multiple users to share a common communication channel, the technology is called Code Division Multiple Access (CDMA). Each group of users is given a shared code and individual conversations are encoded in a digital sequence. Data is available on the shared channel, but only those users associated with a particular code can access the data.
Concept
Each communicating station is assigned a unique code. The codes stations have the following properties
-
If code of one station is multiplied by code of another station, it yields 0.
-
If code of one station is multiplied by itself, it yields a positive number equal to the number of stations.
The communication technique can be explained by the following example
Consider that there are four stations w, x, y and z that have been assigned the codes cw , cx, cy and cz and need to transmit data dw , dx, dy and dz respectively. Each station multiplies its code with its data and the sum of all the terms is transmitted in the communication channel.
Thus, the data in the communication channel is dw . cw+ dx . cx+ dy . cy+ dz . cz
Suppose that at the receiving end, station z wants to receive data sent by station y. In order to retrieve the data, it will multiply the received data by the code of station y which is dy.
data = (dw . cw+ dx . cx+ dy . cy+ dz . cz ) . cy = dw . cw . cy + dx . cx . cy+ dy . cy . cy+ dz . cz . cy =0 + 0 + dy . 4 + 0 = 4dy
Thus, it can be seen that station z has received data from only station y while neglecting the other codes.
Orthogonal Sequences
The codes assigned to the stations are carefully generated codes called chip sequences or more popularly orthogonal sequences. The sequences are comprised of +1 or 1. They hold certain properties so as to enable communication.
The properties are
-
A sequence has m elements, where m is the number of stations.
-
If a sequence is multiplied by a number, all elements are multiplied by that number.
-
For multiplying two sequences, the corresponding positional elements are multiplied and summed to give the result.
-
If a sequence is multiplied by itself, the result is m, i.e. the number of stations.
-
If a sequence is multiplied by another sequence, the result is 0.
-
For adding two sequences, we add the corresponding positional elements.
Let us ascertain the above properties through an example.
Consider the following chip sequences for the four stations w, x, y and z
[+1 -1 -1 +1], [+1 +1 -1 -1], [+1 -1 +1 -1] and [+1 +1 +1 +1]
-
Each sequence has four elements.
-
If [+1 -1 -1 +1] is multiplied by 6, we get [+6 -6 -6 +6].
-
If [+1 -1 -1 +1] is multiplied by itself, i.e. [+1 -1 -1 +1]. [+1 -1 -1 +1], we get +1+1+1+1 = 4, which is equal to the number of stations.
-
If [+1 -1 -1 +1] is multiplied by [+1 +1 -1 -1], we get +1-1+1-1 = 0
-
If [+1 -1 -1 +1] is added to [+1 +1 -1 -1], we get [+2 0 -2 0].
The commonly used orthogonal codes are Walsh codes.