
- C++ Library - Home
- C++ Library - <fstream>
- C++ Library - <iomanip>
- C++ Library - <ios>
- C++ Library - <iosfwd>
- C++ Library - <iostream>
- C++ Library - <istream>
- C++ Library - <ostream>
- C++ Library - <sstream>
- C++ Library - <streambuf>
- C++ Library - <atomic>
- C++ Library - <complex>
- C++ Library - <exception>
- C++ Library - <functional>
- C++ Library - <limits>
- C++ Library - <locale>
- C++ Library - <memory>
- C++ Library - <new>
- C++ Library - <numeric>
- C++ Library - <regex>
- C++ Library - <stdexcept>
- C++ Library - <string>
- C++ Library - <thread>
- C++ Library - <tuple>
- C++ Library - <typeinfo>
- C++ Library - <utility>
- C++ Library - <valarray>
- The C++ STL Library
- C++ Library - <array>
- C++ Library - <bitset>
- C++ Library - <deque>
- C++ Library - <forward_list>
- C++ Library - <list>
- C++ Library - <map>
- C++ Library - <multimap>
- C++ Library - <queue>
- C++ Library - <priority_queue>
- C++ Library - <set>
- C++ Library - <stack>
- C++ Library - <unordered_map>
- C++ Library - <unordered_set>
- C++ Library - <vector>
- C++ Library - <algorithm>
- C++ Library - <iterator>
- The C++ Advanced Library
- C++ Library - <any>
- C++ Library - <barrier>
- C++ Library - <bit>
- C++ Library - <chrono>
- C++ Library - <cinttypes>
- C++ Library - <clocale>
- C++ Library - <condition_variable>
- C++ Library - <coroutine>
- C++ Library - <cstdlib>
- C++ Library - <cstring>
- C++ Library - <cuchar>
- C++ Library - <charconv>
- C++ Library - <cfenv>
- C++ Library - <cmath>
- C++ Library - <ccomplex>
- C++ Library - <expected>
- C++ Library - <format>
- C++ Library - <future>
- C++ Library - <flat_set>
- C++ Library - <flat_map>
- C++ Library - <filesystem>
- C++ Library - <generator>
- C++ Library - <initializer_list>
- C++ Library - <latch>
- C++ Library - <memory_resource>
- C++ Library - <mutex>
- C++ Library - <mdspan>
- C++ Library - <optional>
- C++ Library - <print>
- C++ Library - <ratio>
- C++ Library - <scoped_allocator>
- C++ Library - <semaphore>
- C++ Library - <source_location>
- C++ Library - <span>
- C++ Library - <spanstream>
- C++ Library - <stacktrace>
- C++ Library - <stop_token>
- C++ Library - <syncstream>
- C++ Library - <system_error>
- C++ Library - <string_view>
- C++ Library - <stdatomic>
- C++ Library - <variant>
- C++ STL Library Cheat Sheet
- C++ STL - Cheat Sheet
- C++ Programming Resources
- C++ Programming Tutorial
- C++ Useful Resources
- C++ Discussion
C++ scoped_allocator::allocate() Function
The std::scoped_allocator::allocate() function in C++, allows for memory allocation within a scope, ensuring that the memory is properly managed and released. It is the part of the scoped_allocator_adaptor class, which adapts an allocator to manage memory across multiple levels of containers.
It provides a mechanism for allocating memory for a specified number of elements, using the allocated memory fro the provided allocator.
Syntax
Following is the syntax for std::scoped_allocator::allocate() function.
pointer allocate( size_type n ); or pointer allocate( size_type n, const_void_pointer hint );
Parameters
- n − It indicates the number of objects to allocate storage for.
- hint − It indicates the pointer to a nearby memory location.
Return Value
This function returns the pointer to the allocated storage.
Example 1
Let's look at the following example, where we are going to allocate the memory for a single integer using the allocate().
#include <iostream> #include <memory> #include <scoped_allocator> int main() { std::allocator < int > x; std::scoped_allocator_adaptor < std::allocator < int >> y(x); int * ptr = y.allocate(1); x.construct(ptr, 1121); std::cout << "Allocated value: " << * ptr << std::endl; x.destroy(ptr); y.deallocate(ptr, 1); return 0; }
Output
Output of the above code is as follows −
Allocated value: 1121
Example 2
Consider the following example, where we are going to allocate memory for an array of 6 integers, Each element is initialized using the construct(), and the values are printed.
#include <iostream> #include <memory> #include <scoped_allocator> int main() { std::allocator < int > a; std::scoped_allocator_adaptor < std::allocator < int >> b(a); int * array = b.allocate(5); for (int x = 0; x < 6; ++x) { a.construct( & array[x], x * 11); } for (int x = 0; x < 6; ++x) { std::cout << array[x] << " "; } std::cout << std::endl; for (int x = 0; x < 6; ++x) { a.destroy( & array[x]); } b.deallocate(array, 6); return 0; }
Output
Output of the above code is as follows −
0 11 22 33 44 55