
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Kruskal's Algorithm in JavaScript
Kruskal's algorithm is a greedy algorithm that works as follows −
1. It Creates a set of all edges in the graph.
2. While the above set is not empty and not all vertices are covered,
- It removes the minimum weight edge from this set
- It checks if this edge is forming a cycle or just connecting 2 trees. If it forms a cycle, we discard this edge, else we add it to our tree.
3. When the above processing is complete, we have a minimum spanning tree.
In order to implement this algorithm, we need 2 more data structures.
First, we need a priority queue that we can use to keep the edges in a sorted order and get our required edge on each iteration.
Next, we need a disjoint set data structure. A disjoint-set data structure (also called a union-find data structure or merge–find set) is a data structure that tracks a set of elements partitioned into a number of disjoint (non-overlapping) subsets. Whenever we add a new node to a tree, we will check if they are already connected. If yes, then we have a cycle. If no, we will make a union of both vertices of the edge. This will add them to the same subset.
Let us look at the implementation of UnionFind or DisjointSet data structure &minsu;
Example
class UnionFind { constructor(elements) { // Number of disconnected components this.count = elements.length; // Keep Track of connected components this.parent = {}; // Initialize the data structure such that all // elements have themselves as parents elements.forEach(e => (this.parent[e] = e)); } union(a, b) { let rootA = this.find(a); let rootB = this.find(b); // Roots are same so these are already connected. if (rootA === rootB) return; // Always make the element with smaller root the parent. if (rootA < rootB) { if (this.parent[b] != b) this.union(this.parent[b], a); this.parent[b] = this.parent[a]; } else { if (this.parent[a] != a) this.union(this.parent[a], b); this.parent[a] = this.parent[b]; } } // Returns final parent of a node find(a) { while (this.parent[a] !== a) { a = this.parent[a]; } return a; } // Checks connectivity of the 2 nodes connected(a, b) { return this.find(a) === this.find(b); } }
You can test this using −
Example
let uf = new UnionFind(["A", "B", "C", "D", "E"]); uf.union("A", "B"); uf.union("A", "C"); uf.union("C", "D"); console.log(uf.connected("B", "E")); console.log(uf.connected("B", "D"));
Output
This will give the output −
false true
Now let us look at the implementation of Kruskal's algorithm using this data structure −
Example
kruskalsMST() { // Initialize graph that'll contain the MST const MST = new Graph(); this.nodes.forEach(node => MST.addNode(node)); if (this.nodes.length === 0) { return MST; } // Create a Priority Queue edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length); // Add all edges to the Queue: for (let node in this.edges) { this.edges[node].forEach(edge => { edgeQueue.enqueue([node, edge.node], edge.weight); }); } let uf = new UnionFind(this.nodes); // Loop until either we explore all nodes or queue is empty while (!edgeQueue.isEmpty()) { // Get the edge data using destructuring let nextEdge = edgeQueue.dequeue(); let nodes = nextEdge.data; let weight = nextEdge.priority; if (!uf.connected(nodes[0], nodes[1])) { MST.addEdge(nodes[0], nodes[1], weight); uf.union(nodes[0], nodes[1]); } } return MST; }
You can test this using −
Example
let g = new Graph(); g.addNode("A"); g.addNode("B"); g.addNode("C"); g.addNode("D"); g.addNode("E"); g.addNode("F"); g.addNode("G"); g.addEdge("A", "C", 100); g.addEdge("A", "B", 3); g.addEdge("A", "D", 4); g.addEdge("C", "D", 3); g.addEdge("D", "E", 8); g.addEdge("E", "F", 10); g.addEdge("B", "G", 9); g.addEdge("E", "G", 50); g.kruskalsMST().display();
Output
This will give the output −
A->B, D B->A, G C->D D->C, A, E E->D, F F->E G->B