
MySQL Router 8.0

Abstract

MySQL Router is part of InnoDB Cluster, and is lightweight middleware that provides transparent routing between
your application and back-end MySQL Servers. It can be used for a wide variety of use cases, such as providing
high availability and scalability by effectively routing database traffic to appropriate back-end MySQL Servers. The
pluggable architecture also enables developers to extend MySQL Router for custom use cases. For additional
details about how MySQL Router is part of InnoDB Cluster, see MySQL AdminAPI.

MySQL Router 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7.

For notes detailing the changes in each release, see the MySQL Router Release Notes.

If you have not yet installed MySQL Router, download it from the download site.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using
a Commercial release of MySQL Router, see MySQL Router Commercial License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in this
Commercial release. If you are using a Community release of MySQL Router, see MySQL Router Community
License Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2025-04-28 (revision: 81812)

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://dev.mysql.com/doc/relnotes/mysql-router/en/
https://dev.mysql.com/downloads/router
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-router-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-8.0-gpl-en.pdf

Table of Contents
Preface and Legal Notices .. v
1 General Information ... 1

1.1 Routing for MySQL InnoDB Cluster ... 1
1.2 Cluster Metadata and State ... 2
1.3 Connection Routing ... 3
1.4 Connection Sharing and Reuse ... 3
1.5 Application Considerations .. 4
1.6 What's New in MySQL Router 8.0 ... 6

2 Installing MySQL Router .. 9
2.1 Installing MySQL Router on Linux ... 9
2.2 Installing MySQL Router with Docker ... 11
2.3 Installing MySQL Router on macOS ... 13
2.4 Installing MySQL Router on Windows .. 13
2.5 Installing MySQL Router from Source Code ... 14
2.6 Upgrading MySQL Router ... 15

3 Deploying MySQL Router ... 17
3.1 Bootstrapping MySQL Router .. 18
3.2 Trying out MySQL Router in a Sandbox ... 20
3.3 Basic Connection Routing ... 24

4 Configuration ... 27
4.1 Configuration File Syntax .. 27
4.2 Configuration File Locations .. 29
4.3 Configuration Options .. 31

4.3.1 Defining Options Using the Command Line ... 31
4.3.2 MySQL Router Command Line Programs .. 31
4.3.3 Configuration File Options .. 57
4.3.4 Configuration File Example ... 93

4.4 TLS Configuration ... 94
5 MySQL Router Application ... 97

5.1 Starting MySQL Router ... 97
5.2 Using the Logging Feature .. 98

6 MySQL Router REST API .. 101
6.1 A Simple MySQL Router REST API Guide ... 101
6.2 MySQL Router REST API Reference ... 103

A MySQL Router Frequently Asked Questions ... 123

iii

iv

Preface and Legal Notices
This is the MySQL Router manual. This document covers MySQL Router.

Licensing information. This product may include third-party software, used under license. If
you are using a Commercial release of MySQL Router, see MySQL Router Commercial License
Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL Router, see MySQL Router Community License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices
Copyright © 2006, 2025, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

v

https://downloads.mysql.com/docs/licenses/mysql-router-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-8.0-gpl-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 General Information

Table of Contents
1.1 Routing for MySQL InnoDB Cluster ... 1
1.2 Cluster Metadata and State ... 2
1.3 Connection Routing ... 3
1.4 Connection Sharing and Reuse ... 3
1.5 Application Considerations .. 4
1.6 What's New in MySQL Router 8.0 ... 6

MySQL Router is a building block for high availability (HA) solutions. It simplifies application
development by intelligently routing connections to MySQL servers for increased performance and
reliability.

MySQL Router officially supports active MySQL Server versions equal to or below the MySQL Router
version. For example, MySQL Router 8.0 officially supports MySQL 8.0. As of MySQL Router 8.0.41,
MySQL Router does not support versions from a newer series, such as MySQL Server 8.4.

1.1 Routing for MySQL InnoDB Cluster

MySQL Router is part of InnoDB Cluster and is lightweight middleware that provides transparent
routing between your application and back-end MySQL Servers. It is used for a wide variety of use
cases, such as providing high availability and scalability by routing database traffic to appropriate back-
end MySQL servers. The pluggable architecture also enables developers to extend MySQL Router for
custom use cases.

For additional details about how Router is part of InnoDB Cluster, see MySQL AdminAPI.

Introduction

For client applications to handle failover, they need to be aware of the InnoDB cluster topology and
know which MySQL instance is the PRIMARY. While it is possible for applications to implement that
logic, MySQL Router can provide and handle this functionality for you.

MySQL uses Group Replication to replicate databases across multiple servers while performing
automatic failover in the event of a server failure. When used with a MySQL InnoDB Cluster,
MySQL Router acts as a proxy to hide the multiple MySQL instances on your network and map
the data requests to one of the cluster instances. As long as there are enough online replicas and
communication between the components is intact, applications will be able to contact one of them.
MySQL Router also makes this possible by having applications connect to MySQL Router instead of
directly to MySQL.

Deploying Router with MySQL InnoDB Cluster

The recommended deployment model for MySQL Router is with InnoDB Cluster, with Router sitting on
the same host as the application.

The steps for deploying MySQL Router with an InnoDB Cluster after configuring the cluster are:

1. Install MySQL Router.

2. Bootstrap InnoDB Cluster, and test.

Bootstrapping automatically configures MySQL Router for an existing InnoDB Cluster by using --
bootstrap and other command-line options. During bootstrap, Router connects to the cluster,
fetches its metadata, and configures itself for use. Bootstrapping is optional.

1

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

Cluster Metadata and State

For additional information, see Chapter 3, Deploying MySQL Router.

3. Set up MySQL Router for automatic startup.

Configure your system to automatically start MySQL Router when the host is rebooted, a process
similar to how the MySQL server is configured to start automatically. For additional details, see
Section 5.1, “Starting MySQL Router”.

For example, after creating a MySQL InnoDB Cluster, you might configure MySQL Router using:

$> mysqlrouter --bootstrap localhost:3310 --directory /opt/myrouter --user snoopy

This example bootstraps MySQL Router to an existing InnoDB Cluster where:

• localhost:3310 is a member of an InnoDB cluster, and either the PRIMARY or bootstrap will
redirect to a PRIMARY in the cluster.

• Because the optional --directory bootstrap option was used, this example creates a self-
contained installation with all generated directories and files at /opt/myrouter/. These files
include start.sh, stop.sh, log/, and a fully functional MySQL Router configuration file named
mysqlrouter.conf.

• Only the host's system user named snoopy will have access to /opt/myrouter/*.

See --bootstrap and related options for ways to modify the bootstrap configuration process. For
example, passing in --conf-use-sockets enables Unix domain socket connections because only
TCP/IP connections are enabled by default.

1.2 Cluster Metadata and State

MySQL Router works by sitting in between applications and MySQL servers. Applications connect to
Router normally as if they were connecting to an ordinary MySQL server. Whenever an application
connects to Router, Router chooses a suitable MySQL server from the pool of candidates that it knows
about, and then connects to it. From that moment on, Router forwards all network traffic between the
application and MySQL, including responses coming back from it.

MySQL Router keeps a cached list of the online MySQL servers, or the topology and state of the
configured InnoDB cluster. Initially, the list is loaded from Router's configuration file when Router is
started. This list was generated with InnoDB Cluster servers when Router was bootstrapped using the
--bootstrap option.

To keep the cache updated, the metadata cache component keeps an open connection to one of the
InnoDB Cluster servers that contains metadata. It does so by querying the metadata database and live
state information from MySQL's performance schema. The cluster metadata is changed whenever the
InnoDB Cluster is modified, such as adding or removing a MySQL server using the MySQL Shell, and
the performance_schema tables are updated in real-time by the MySQL server's Group Replication
plugin whenever a cluster state change is detected.

When Router detects that a connected MySQL server shuts down, for example because the metadata
cache has lost its connection and can not connect again, it attempts to connect to a different MySQL
server to fetch metadata and InnoDB Cluster state from the new MySQL server.

Note

Dropping cluster metadata using MySQL Shell, such as
dba.dropMetadataSchema(), causes Router to drop all current connections
and forbid new connections. This causes a full outage.

Application connections to a MySQL server that shuts down are automatically closed. They must then
reconnect to Router, which redirects them to an online MySQL server.

2

Connection Routing

1.3 Connection Routing

Connection routing means redirecting MySQL connections to an available MySQL server. MySQL
packets are routed in their entirety without inspection. For an example deployment using basic
connection routing, see Section 3.3, “Basic Connection Routing”.

Applications connect to MySQL Router and not directly to MySQL Server, and if the connection fails
then applications are designed to retry the connection because MySQL Router selects a new MySQL
server after failed attempts. This is also called simple redirect connection routing because it requires
the application to retry the connection. That is, if a connection from MySQL Router to the MySQL
server is interrupted, the application encounters a connection failure. However, a new connection
attempt triggers Router to find and connect to another MySQL server.

Routed servers and routing strategies are defined in a configuration file. For example, the following
section tells MySQL Router to listen for connections on port 7002 of the localhost, and then
redirect those connections to a MySQL instance defined by the destinations option, including
servers running on the localhost listening on ports 3306, 3307, and 3308. We also use the
routing_strategy option to use the round robin form of load-balancing. For additional information,
see Section 4.3, “Configuration Options”

[routing:simple_redirect]
bind_port = 7002
routing_strategy = round-robin
destinations = localhost:3306,localhost:3307,localhost:3308

This example section is titled routing:simple_redirect. The first part, routing, is the section
name used internally to determine which plugin to load. The second part, simple_redirect, is an
optional section key to differentiate between other routing strategies.

When a server is no longer reachable, MySQL Router moves to the next server destination in the list
and circles back to the first server destination if the list is exhausted as per the round-robin strategy.

Note

Before MySQL Router 8.0, the now deprecated mode option was used instead
of the routing_strategy option that was added in MySQL Router 8.0.

1.4 Connection Sharing and Reuse

MySQL Router enables server connections to be pooled and shared. If a client disconnects, or the
client connection is idle for more than a specified time, the server connection is reset and moved to the
connection pool, where it is available for reuse. This lowers the number of connections the server has
to maintain and frees up resources normally bound to idling connections.

Pooled connections are reused if a new client connection is made or an idle connection becomes
active again. MySQL Router tracks the statements executed by the client and the SQL state of the
session to ensure client connections do not lose their session state. If a connection is shared, the
reconnected session is in the state the client left it. If that is not possible, the connection is not shared.

Warnings and errors generated by statements are captured and returned when requested by the client.

Note

The default number of I/O threads is the same as the number of CPU threads
supported by the host and can be configured with the threads configuration
option.

Limitations

3

Configuration

• Connection sharing is not supported in PASSTHROUGH mode or if server-ssl-
mode=AS_CLIENT and client-ssl-mode=PREFERRED.

• Connection sharing is only supported for classic connections.

• SQL statements that depend on previous session state (see below) will not work when connection
sharing is active, unless inside a transaction.

• Certain features will leave the connection in a state that blocks it from being shared when idle.
Closing or resetting the connection (COM_RESET_CONNECTION) will allow the connection to be
reused again.

Unsupported SQL Features

The following statements and functions are not supported when connection sharing is active, except
inside a transaction.

• GET DIAGNOSTICS

• LAST_INSERT_ID()

SQL Features which Prevent Sharing

The following SQL features prevent the connection from being pooled until the connection is closed or
reset by the client.

• SQL_CALC_FOUND_ROWS,

• GET_LOCK() and service_get_write_locks()

• User variables

• Temporary tables

• Prepared statements

Note

Transactions and LOCK TABLES also block connection sharing until the
transaction is closed, or the lock released.

Configuration

Connection sharing is configured using the following options:

• connection_sharing

• connection_sharing_delay

• max_idle_server_connections

• idle_timeout

The following is an example of configuring connection sharing during bootstrap:

 --conf-set-option=routing:bootstrap_rw.connection_sharing=1
 --conf-set-option=routing:bootstrap_ro.connection_sharing=1
 --conf-set-option=connection_pool.max_idle_server_connections=32

1.5 Application Considerations
MySQL Router usage does not require specific libraries or interfaces. Aside from managing the MySQL
Router instance, write your application as if MySQL Router was a typical MySQL instance.

4

https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html

Scenarios

The only difference when using MySQL Router is how you make connections to the MySQL server.
Applications using a single MySQL connection at startup that does not test for connection errors
must be updated. This is because MySQL Router redirects connections when the connection is
attempted and does not read packets or perform an analysis. If a MySQL server fails, Router returns
the connection error to the application.

For these reasons, the application should be written to test for connection errors and, if encountered,
retry the connection. If this technique or one similar is employed in your application then using MySQL
Router will not require any extra effort.

The following gives a better sense of why you may want to use MySQL Router and looks into how it is
used from an application's point of view.

Scenarios

There are several possible scenarios for MySQL Router, including:

• As a developer, I want my application to connect to a service so it gets a connection to, by default,
the current primary of a group replication cluster.

• As an administrator, I want to set up multiple services so MySQL Router listens on a different port for
each highly available replica set.

• As an administrator, I want to be able to run a connection routing service on port 3306 so it is more
transparent to a user or application.

• As an administrator, I want to configure a mode for each connection routing service so I can specify
whether a primary or secondary is returned.

Workflow with MySQL Router

The workflow for using MySQL Router is as follows:

1. MySQL Client or Connector connects to MySQL Router to, for example, port 6446.

2. Router checks for an available MySQL server.

3. Router opens a connection to a suitable MySQL server.

4. Router forwards packets back and forth, between the application and the MySQL server

5. Router disconnects the application if the connected MySQL server fails. The application can then
retry connecting to Router, and Router then chooses a different and available MySQL server.

Connections using MySQL Router

An application connects to MySQL Router, and Router connects the application to an available MySQL
server.

This example demonstrates that a connection transparently connects to one of the InnoDB Cluster
instances. Because this example uses a sandboxed InnoDB Cluster where all instances run on the
same host, we check the port status variable to see which MySQL instance is connected.

Make a connection to MySQL Router using the MySQL client, for example:

$> mysql -u root -h 127.0.0.1 -P 6446 -p

These port numbers depend on your configuration, but compare ports in this example:

mysql> select @@port;
+--------+

5

Recommendations

| @@port |
+--------+
| 3310 |
+--------+
1 row in set (0.00 sec)

To summarize, the client (application) connected to port 6446 but is connected to a MySQL instance on
port 3310.

Recommendations

The following are recommendations for using MySQL Router.

• Install and run MySQL Router on the same host as the application. For a list of reasons, see
Chapter 3, Deploying MySQL Router.

• Bind Router to localhost using bind_port = 127.0.0.1:<port> in the configuration file.
Alternatively, on Linux, disable TCP connections (see --conf-skip-tcp) and limit this to only
using Unix socket connections (see --conf-use-sockets).

1.6 What's New in MySQL Router 8.0

This section summarizes many of the new features added to MySQL Router 8.0, in relation to MySQL
Router 2.1.

Version Numbering

MySQL Router 8.0.3 is the first 8.0.x release to use the new numbering, and is the successor to
MySQL Router 2.1.4.

Important

This guide is not updated with every MySQL Router 8.0 release; see the
MySQL Router 8.0 release notes for updated information.

MySQL Connectors and other MySQL client tools and applications now synchronize the first digit of
their version number with the (highest) MySQL server version they support. This change makes it easy
and intuitive to decide which client version to use for which server version. Similarly, MySQL Router
now uses the same version number as MySQL Server.

New Features and Changes

• The optional routing_strategy configuration option was added. The available values are
first-available, next-available, round-robin, and round-robin-with-fallback.

Previously, these strategies were described as scheduling modes by the mode configuration option
where the read-write mode defaults to the first-available strategy, and the read-only mode defaults to
the round-robin strategy. This preserves previous behavior for these modes.

• The --ssl-key and --ssl-cert optional bootstrap command-line options were added. They
directly use their MySQL client's counterparts, and specify the client-side certificate and private key
to facilitate client-side authentication. This is useful when the root account used during bootstrap was
created with REQUIRE X509, which requires the client to authenticate itself when logging in.

• The new connect_timeout and read_timeout metadata configuration file options were added.
These are defined under the [DEFAULT] namespace and affect internal operations, such as
metadata server connections.

• Bootstrap now accepts any member of an InnoDB cluster and automatically finds and reconnects to
a writable primary. Before, only the primary was accepted.

6

https://dev.mysql.com/doc/relnotes/mysql-router/en/news-8-0-x.html

Additional Changes

• Bootstrap now accepts the --config option and reads the [logger] level option's definition.

• The maximum number of concurrent client connections was increased from about 500 to over 5000,
a limit now dependent on the operating system. To achieve this, select()-based fd event calls were
replaced by poll() (or WSAPoll() on Windows).

MySQL Router 8.0.22 increased this limit to about 50,000; see the [IO] backend and threads
configuration options for details.

• A new mysqlrouter_plugin_info utility was added to help debug MySQL Router plugins. It
provides information such as the plugin version, description, ABI version, requirements, and function
pointers.

Additional Changes

For complete list of all changes introduced in MySQL Router 8.0, see the MySQL Router 8.0 Release
Notes

7

https://dev.mysql.com/doc/relnotes/mysql-router/en/news-8-0-x.html
https://dev.mysql.com/doc/relnotes/mysql-router/en/news-8-0-x.html

8

Chapter 2 Installing MySQL Router

Table of Contents
2.1 Installing MySQL Router on Linux ... 9
2.2 Installing MySQL Router with Docker ... 11
2.3 Installing MySQL Router on macOS .. 13
2.4 Installing MySQL Router on Windows .. 13
2.5 Installing MySQL Router from Source Code ... 14
2.6 Upgrading MySQL Router ... 15

This chapter describes how to obtain and install MySQL Router. Downloads are available from the
download site.

System Requirements

• MySQL Router supports the same platforms as MySQL Server, as listed here: https://
www.mysql.com/support/supportedplatforms/database.html

• Hardware: Minimum requirement is 1 CPU Core and 256 MB of RAM. 4+ CPU Cores and 4+ GB of
RAM is recommended.

• Disk Space: Minimum requirement is 100 MB.

• External libraries: Most external dependencies, such as protobuf and rapidjson, are bundled
within the MySQL Router packages. One exception is OpenSSL, which is only bundled for Windows
builds. Package managers should resolve the OpenSSL dependency and install the proper
OpenSSL version as required.

2.1 Installing MySQL Router on Linux

There are binary distributions of MySQL Router available for several variants of Linux, including
Fedora, Oracle Linux, Red Hat, and Ubuntu.

Installation options include:

• Official MySQL Yum or APT repository packages: These binaries are built by the MySQL Release
team. For additional information about installing these, see the quick guides for installing them using
Yum or APT.

• Download official MySQL packages: Downloads are available at https://dev.mysql.com/downloads/
router. Download and install using your preferred package manager.

Alternatively, MySQL Router is included in MySQL Server's source and monolithic binary packages
as of MySQL Router 8.0.13.

• Download the source code and compile yourself: The source code is available as part of MySQL
Server at https://dev.mysql.com/downloads/mysql. Alternatively, the source code is also available on
GitHub (specifically in the router directory).

For information about compiling MySQL Router, see Installing MySQL Router from Source Code.

The procedure for installing on Linux depends on your Linux distribution.

Installing MySQL Router using an official DEB or RPM package creates a local system user and group
named "mysqlrouter" on the host that MySQL Router runs as by default. For additional information, see
the system user's configuration option.

9

https://dev.mysql.com/downloads/router
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/mysql
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server

Installing DEB packages

Installing DEB packages

On Ubuntu, and other systems that use the Debian package scheme, you can either download and
install .deb packages or use the APT package manager.

Using the APT Package Manager

1. Install the MySQL APT repository as described in the MySQL APT Repository documentation. For
example:

Note

Download the APT configuration package from here.

$> sudo dpkg -i mysql-apt-config_0.8.30-1_all.deb

Choose the desired MySQL Server series to install, such as MySQL Server 8.0. This choice also
determines the MySQL Router version that is installed from the MySQL repository.

2. Update your APT repository:

$> sudo apt-get update

3. Install MySQL Router. For example:

$> sudo apt-get install mysql-router-community

Manually Installing a Package

You can also download the .deb package and install it from the command line similarly to

$> sudo dpkg -i package.deb

package.deb is the MySQL Router package name; for example, mysql-router-
community-version-1ubuntu24.04_amd64.deb, where version is the MySQL Router version
number.

Installing RPM packages

On RPM-based systems, you can either download and install RPM packages or use the Yum package
manager.

Using the Yum Package Manager

• First, install the MySQL Yum repository as described in the MySQL Yum Repository documentation.
For example:

Note

Download the Yum configuration package from here.

$> sudo rpm -Uvh mysql84-community-release-el7-1.noarch.rpm

• Next, optionally change the active MySQL Server version, which defaults to MySQL 8.4 LTS. For
example, to change version 8.4 to 8.0 for both the MySQL Server (mysql) and MySQL Router (part of
mysql-tools) subrepositories:

$> sudo yum-config-manager --disable mysql-8.4-lts-community
$> sudo yum-config-manager --enable mysql80-community

$> sudo yum-config-manager --disable mysql-tools-8.4-lts-community

10

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/yum/

Uninstalling

$> sudo yum-config-manager --enable mysql-tools-community

• Next, install MySQL Router. For example:

$> sudo yum install mysql-router-community

Manually Installing an RPM Package

$> sudo rpm -i package.rpm

package.rpm is the MySQL Router package name; for example, mysql-router-
community-version-el7.x86_64.rpm, where version is the MySQL Router version number.

Uninstalling

The procedure for uninstalling MySQL Router on Linux depends on the package you are using.

Uninstalling DEB packages

To uninstall a Debian package, use this command:

$> sudo dpkg -r mysql-router

This command does not remove the configuration files. To also remove them and the data directory,
use:

$> sudo dpkg --purge mysql-router

Note

Alternatively, use apt-get remove mysql-router or apt-get purge
mysql-router.

Uninstalling RPM packages

To uninstall an RPM package, use this command:

$> sudo rpm -e mysql-router-community

Note

Similarly, use yum remove mysql-router-community.

This command does not remove the configuration files.

What Is Not Removed

When not purging, the uninstallation process does not remove your configuration files. On Debian
systems, this might include files such as:

/etc/init.d/mysqlrouter
/etc/mysqlrouter/mysqlrouter.conf
/etc/apparmor.d/usr.sbin.mysqlrouter

2.2 Installing MySQL Router with Docker

The Docker deployment framework supports easy installation and configuration of MySQL Router. This
section explains how to use a MySQL Router Docker image.

You need to have Docker installed on your system before you can use a MySQL Router Docker image.
See Install Docker for instructions.

11

https://docs.docker.com/engine/installation/

Basic Steps for MySQL Router Deployment with Docker

Important

You need to either run docker commands with sudo, or create a docker user
group, and then add to it any users who want to run docker commands. See
details here. Because Docker containers are always run with root privileges, you
should understand the Docker daemon attack surface and properly mitigate the
related risks.

Basic Steps for MySQL Router Deployment with Docker

Warning

The MySQL Docker images maintained by the MySQL team are built
specifically for Linux platforms. Other platforms are not supported, and users
using these MySQL Docker images on them are doing so at their own risk.

Downloading a MySQL Router Docker Image

Downloading the server image in a separate step is not strictly necessary; however, performing this
step before you create your Docker container ensures your local image is up to date. To download the
MySQL Community Edition image, run this command:

$> docker pull container-registry.oracle.com/mysql/community-router:tag

The tag is the label for the image version you want to pull (for example, 8.0). If :tag is omitted,
the latest label is used, and the image for the latest GA version of MySQL Community Router is
downloaded. Refer to Oracle Container Registry and navigate to the MySQL Router image in the
MySQL repository for a complete list of tags for available versions.

Table 2.1 Variables

Variable Description

MYSQL_HOST Required. MySQL host to connect to.

MYSQL_PORT Required. MySQL server listening port.

MYSQL_USER Required. MySQL user to connect with.

MYSQL_PASSWORD Required. String. MySQL user's password.

MYSQL_INNODB_CLUSTER_MEMBERS Optional. Integer. Wait for this number of cluster
instances to be online.

MYSQL_CREATE_ROUTER_USER Optional. Boolean. Whether to create a new
account for MySQL Router to use when running.
Default value is enabled (1). Set to 0 (zero) to
disable.

MYSQL_ROUTER_BOOTSTRAP_EXTRA_OPTIONS Optional. List of additional command line options
to apply during bootstrapping.

Running in a container requires a working InnoDB cluster. If supplied, the run script waits for the
given mysql host to start, the InnoDB cluster to have the MYSQL_INNODB_CLUSTER_MEMBERS-
defined number of members, and then uses the supplied host for bootstrapping. See Section 3.1,
“Bootstrapping MySQL Router”.

For example:

$> docker run \
 -e MYSQL_HOST=localhost \
 -e MYSQL_PORT=3306 \
 -e MYSQL_USER=mysql \
 -e MYSQL_PASSWORD=mysql \
 -e MYSQL_INNODB_CLUSTER_MEMBERS=3 \

12

https://docs.docker.com/engine/installation/linux/linux-postinstall/
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
https://container-registry.oracle.com/

Installing MySQL Router on macOS

 -e MYSQL_ROUTER_BOOTSTRAP_EXTRA_OPTIONS="--conf-use-sockets --conf-use-gr-notifications" \
 -ti container-registry.oracle.com/mysql/community-router

To use a specific version of MySQL Router, add a tag to the -ti value. For example: -ti
container-registry.oracle.com/mysql/community-router:8.0.37 for MySQL Router
8.0.37. To use the latest version, do not add a tag.

Checking the status:

$> docker ps

For additional details, see Oracle Container Registry and navigate to the MySQL Router image in the
MySQL repository.

2.3 Installing MySQL Router on macOS

Download the DMG archive from https://dev.mysql.com/downloads/router/, and execute it to install
MySQL Router.

Alternatively, download, unpack, and manually install the compressed .tar.gz file.

2.4 Installing MySQL Router on Windows

MySQL Router for Windows can be installed using the MySQL Installer that installs and updates all
MySQL products on Windows, or by downloading the ZIP Archive.

Windows Prerequisites

For the Community version of MySQL Router: The Visual C++ Redistributable for Visual Studio 2015
(available at the Microsoft Download Center) is required. Install it before installing MySQL Router on
Windows.

Installing Using MySQL Installer

The general MySQL Installer download is available at https://dev.mysql.com/downloads/windows/
installer/. The MySQL Installer application can install, upgrade, and manage most MySQL products,
including MySQL Router. MySQL Installer also includes an option to bootstrap MySQL Router with a
MySQL InnoDB Cluster.

Recommended Approach

Managing all of your MySQL products, including MySQL Router, with MySQL Installer is the
recommended approach. It handles all requirements, prerequisites, configuration procedures, and
upgrades.

When executing MySQL Installer, you may choose MySQL Router as one of the products to install or
upgrade.

MySQL Router is typically installed in C:\%PROGRAMFILES%\MySQL\MySQL Router 8.0, where
%PROGRAMFILES% is the default directory for programs for your locale. The %PROGRAMFILES%
directory is defined as C:\Program Files\ on most systems.

For information about installing and starting Router as a Windows service, see Section 5.1, “Starting
MySQL Router”.

Installing the ZIP Archive

The ZIP Archive download is available at https://dev.mysql.com/downloads/router/.

13

https://container-registry.oracle.com/
https://dev.mysql.com/downloads/router/
http://www.microsoft.com/en-us/download/default.aspx
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/downloads/router/

Installing MySQL Router from Source Code

Unlike installing with MySQL Installer, unpacking the MySQL Router ZIP archive does not check for
dependencies on your system, such as the required VC++ 2015 runtime. When installing MySQL
Router using the ZIP archive, download and install Visual C++ Redistributable for Visual Studio 2015
before using MySQL Router.

After installing the prerequisites, unzip the ZIP Archive and execute bin/mysqlrouter.exe as you
normally would.

For information about installing and using MySQL Router as a Windows service, see Section 5.1,
“Starting MySQL Router”.

2.5 Installing MySQL Router from Source Code

MySQL Router is part of the MySQL Server source code tree; compiling MySQL Server also compiles
MySQL Router. This assumes -DWITH_ROUTER=ON, which is enabled by default. The instructions here
are brief, see Installing MySQL from Source for specific prerequisites and additional details.

Note

MySQL Router source code was separate from MySQL Server before v8.0.13. It
now resides within the router directory inside the MySQL Server source code
repository.

Get Source Code

To compile MySQL Router, download the MySQL Server source code from https://dev.mysql.com/
downloads/mysql. Alternatively, git clone mysql-server on GitHub.

Download and unpack the MySQL Server source files, for example:

$> tar xzf mysql-8.0.42.tar.gz
$> cd mysql-8.0.42

Once this is complete, you need to configure using cmake as you would for MySQL Server.

Configure

The CMake program provides control over how you configure a source distribution. Typically, you do
this using options on the CMake command line. The CMake options are not documented here, see
MySQL Source-Configuration Options.

To compile the source code, create a folder to contain the compiled binaries and executables, run
cmake to create the make file, and then compile the code. See Installing MySQL Server from Source
for additional details, including platform specific prerequisites and concerns.

Note

If you change anything and need to recompile from scratch, be sure to delete
the CMakeCache.txt file before executing the cmake command.

Begin by executing the cmake command to create the make file. The following commands are run from
the root of the MySQL Server source code tree:

$> mkdir build && cd build
$> cmake ..

Executing cmake may yield errors related to missing libraries or tools. For example, macOS builds may
need custom boost and bison options:

$> cmake .. -DDOWNLOAD_BOOST=1 -DWITH_BOOST=/tmp -DBISON_EXECUTABLE=/usr/local/opt/bison/bin/bison

14

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/mysql
https://dev.mysql.com/downloads/mysql
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html

Compile

Compile

You can compile MySQL Server as you normally would (simply make) as it also compiles MySQL
Router, or build MySQL Router specific targets. For example, to only build MySQL Router with its
libraries, plugins, and tests:

$> make mysqlrouter_all

Optionally execute the MySQL Router specific tests with ctest:

$> ctest -R routertest_

Installation

There is not a make option to only install MySQL Router from source because executing make
install initiates a full MySQL Server build.

Developer Related Notes

Notes related to using and testing a locally compiled MySQL Router version for development purposes:

• To run a local build without make install, configure Router to find the newly built
plugin_folder as compiling generates a non-standard installation directory structure. Either
manually edit the generated mysqlrouter.conf or set it during bootstrap, for example with: --
conf-set-option=DEFAULT.plugin_folder=../plugin_output_directory

Similarly, also set runtime_folder accordingly, for example: --conf-set-
option=DEFAULT.runtime_folder=../runtime_output_directory

• While individual targets do produce binaries, such as make mysqlrouter_password, building all
Router targets is recommended

• To avoid building unit tests, also configure with -DWITH_UNIT_TESTS=0

2.6 Upgrading MySQL Router

MySQL Router as a part of InnoDB Cluster

MySQL Router is most commonly used as an InnoDB Cluster component; with Router bootstrapped
against the cluster. For related information, see Section 3.1, “Bootstrapping MySQL Router”.

If No Metadata Upgrade Needed

MySQL Router can be upgraded independently of the InnoDB Cluster components if a metadata
upgrade is not needed.

Since the assumption is that the Router configuration file and state file remain backward compatible,
the simplest upgrade scenario is to install a new version using an installer/upgrade package for the
system. In most cases, the installer handles stopping and restarting the running instance after the
upgrade. If that is not the case (such as installing from the source or a tar.gz archive) then the running
Router instance must be manually stopped and restarted after the installation/upgrade process.

If a Metadata Upgrade Needed

When the InnoDB Cluster requires a cluster metadata schema upgrade (for example, the metadata
schema changed from version 1.x to 2.x between the 8.0.18 and 8.0.19 Router releases) then Router
must be upgraded as a part of the metadata upgrade procedure described in the MySQL Shell guide at
Upgrade Metadata Schema.

The Router logs indicate if existing metadata is incompatible with the new Router version with an error,
such as:

15

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-dba-upgrade-metadata.html

Standalone MySQL Router (not a part of InnoDB Cluster)

This version of MySQL Router is not compatible with the provided MySQL InnoDB cluster metadata

Bootstrapping Router after installing a new version

Usually bootstrapping is not needed after the upgrade. The exceptions to this are:

• If the new Router version introduces new capabilities that requires another bootstrap operation to
use them. For example, ClusterSet support was added in MySQL Router 8.0.28. In this case, if an
active cluster is part of a ClusterSet, bootstrapping sets up the appropriate configuration options to
work with a ClusterSet.

• If the new MySQL Router is installed at a different location than the previous version; in that case the
configuration file will contain paths (such as plugin_folder) to the previous installation. Manually
changing the existing configuration file is an alternative.

Standalone MySQL Router (not a part of InnoDB Cluster)

Since the assumption is that the Router configuration file and state file remain backward compatible,
the simplest upgrade scenario is to install a new version using an installer/upgrade package for the
system. In most cases, the installer handles stopping and restarting the running instance after the
upgrade. If that is not the case (such as installing from the source or a tar.gz archive) then the running
Router instance must be manually stopped and restarted after the installation/upgrade process.

The existing configuration file is likely compatible with the new version but would require adjusting to
set newly added options.

16

Chapter 3 Deploying MySQL Router

Table of Contents
3.1 Bootstrapping MySQL Router .. 18
3.2 Trying out MySQL Router in a Sandbox ... 20
3.3 Basic Connection Routing ... 24

Performance Recommendations

For best performance, MySQL Router is typically installed on the same host as the application that
uses it. Possible reasons include:

• To allow local UNIX domain socket connections to the application, instead of TCP/IP.

Note

Unix domain sockets can function with applications connecting to MySQL
Router, but not for MySQL Router connecting to a MySQL Server.

• To decrease network latency.

• To allow MySQL Router to connect to MySQL without requiring extra accounts for the
Router's host, for MySQL accounts that are created specifically for application hosts such as
myapp@198.51.100.45 instead of a value like myapp@%.

• Typically application servers are easiest to scale.

You can run multiple MySQL Router instances on your network, and you do not need to isolate MySQL
Router to a single machine. This is because MySQL Router has no affinity for any particular server or
host.

Figure 3.1 Example MySQL Router Deployment

17

Bootstrapping MySQL Router

3.1 Bootstrapping MySQL Router

Here is a brief example to demonstrate how MySQL Router can be deployed to use an InnoDB Cluster
using bootstrapping. For additional information, see --bootstrap and the other bootstrap options.

This example creates a standalone MySQL Router instance using the --directory option, enables
sockets, uses --account to customize Router's MySQL username, and sets --account-create to
always to only bootstrap if the account does not already exist. This example assumes that an InnoDB
Cluster named myCluster already exists.

$> mysqlrouter --bootstrap root@localhost:3310 --directory /tmp/myrouter
 --conf-use-sockets --account routerfriend --account-create always

Please enter MySQL password for root:

Bootstrapping MySQL Router instance at '/tmp/myrouter'...

Please enter MySQL password for routerfriend:

- Creating account(s)
- Verifying account (using it to run SQL queries that would be run by Router)
- Storing account in keyring
- Adjusting permissions of generated files
- Creating configuration /tmp/myrouter/mysqlrouter.conf

MySQL Router configured for the InnoDB Cluster 'myCluster'

After this MySQL Router has been started with the generated configuration

 $ mysqlrouter -c /tmp/myrouter/mysqlrouter.conf

the cluster 'myCluster' can be reached by connecting to:

MySQL Classic protocol

- Read/Write Connections: localhost:6446, /tmp/myrouter/mysql.sock
- Read/Only Connections: localhost:6447, /tmp/myrouter/mysqlro.sock

MySQL X protocol

- Read/Write Connections: localhost:6448, /tmp/myrouter/mysqlx.sock
- Read/Only Connections: localhost:6449, /tmp/myrouter/mysqlxro.sock

At this point the bootstrap process has created a mysqlrouter.conf file with the required files at the
directory specified, and the result shows you how to start this MySQL Router instance. A generated
MySQL Router directory looks similar to:

$> ls -l | awk '{print $9}'

data/
log/
mysqlrouter.conf
mysqlrouter.key
run/
start.sh
stop.sh

A generated MySQL Router configuration file (mysqlrouter.conf) looks similar to:

File automatically generated during MySQL Router bootstrap
[DEFAULT]
logging_folder=/tmp/myrouter/log
runtime_folder=/tmp/myrouter/run
data_folder=/tmp/myrouter/data
keyring_path=/tmp/myrouter/data/keyring
master_key_path=/tmp/myrouter/mysqlrouter.key
connect_timeout=15
read_timeout=30
dynamic_state=/tmp/myrouter/data/state.json

18

Bootstrapping MySQL Router

[logger]
level = INFO

[metadata_cache:myCluster]
cluster_type=gr
router_id=1
user=routerfriend
metadata_cluster=myCluster
ttl=0.5
auth_cache_ttl=-1
auth_cache_refresh_interval=2
use_gr_notifications=0

[routing:myCluster_rw]
bind_address=0.0.0.0
bind_port=6446
socket=/tmp/myrouter/mysql.sock
destinations=metadata-cache://myCluster/?role=PRIMARY
routing_strategy=first-available
protocol=classic

[routing:myCluster_ro]
bind_address=0.0.0.0
bind_port=6447
socket=/tmp/myrouter/mysqlro.sock
destinations=metadata-cache://myCluster/?role=SECONDARY
routing_strategy=round-robin-with-fallback
protocol=classic

[routing:myCluster_x_rw]
bind_address=0.0.0.0
bind_port=6448
socket=/tmp/myrouter/mysqlx.sock
destinations=metadata-cache://myCluster/?role=PRIMARY
routing_strategy=first-available
protocol=x

[routing:myCluster_x_ro]
bind_address=0.0.0.0
bind_port=6449
socket=/tmp/myrouter/mysqlx.sock
destinations=metadata-cache://myCluster/?role=SECONDARY
routing_strategy=round-robin-with-fallback
protocol=x

In this example, MySQL Router configured four ports and four sockets. Ports are added by default, and
sockets were added by passing in --conf-use-sockets. The InnoDB Cluster named "myCluster" is
the source of the metadata, and the destinations are using the InnoDB Cluster metadata cache to
dynamically configure host information. The related command line options:

• --conf-use-sockets: Optionally enable UNIX domain sockets for all four connection types, as
demonstrated in the example.

• --conf-skip-tcp: Optionally disable TCP ports, an option to pass in with --conf-use-sockets
if you only want sockets.

• --conf-base-port: Optionally change the range of ports rather than using the default ports. This
sets the port for classic read-write (PRIMARY) connections, and defaults to 6446.

• --conf-bind-address: Optionally change the bind_address value for each route.

To demonstrate MySQL Router's behavior, the following client (application) connects to port 6446 but is
connected to a MySQL instance on port 3310.

$> mysql -u root -h 127.0.0.1 -P 6446 -p

...

19

Trying out MySQL Router in a Sandbox

mysql> select @@port;
+--------+
| @@port |
+--------+
| 3310 |
+--------+
1 row in set (0.00 sec)

For additional examples, see Set Up a MySQL Server Sandbox and Deploying a Production InnoDB
Cluster.

3.2 Trying out MySQL Router in a Sandbox

Test a MySQL Router installation by setting up a Router sandbox with InnoDB Cluster. In this case,
Router acts as an intermediate node redirecting client connections to a list of servers. If one server
fails, clients are redirected to the next available server in the list.

Set Up a MySQL Server Sandbox

Begin by starting three MySQL Servers. You can do this in a variety of ways, including:

• Using the MySQL Shell AdminAPI interface that InnoDB Cluster provides. This is the recommended
and simplest approach, and is documented in this section. For additional information, see MySQL
AdminAPI.

For a scripted approach, see Scripting AdminAPI.

• By installing three MySQL Server instances on three different hosts, or on the same host.

• Using the mysql-test-run.pl script that is part of the MySQL Test Suite framework. For
additional information, see The MySQL Test Suite.

The following example uses the AdminAPI method to set up our cluster sandbox. This is a brief
overview, so see MySQL InnoDB Cluster in the InnoDB Cluster manual for additional details. The
following assumes you have a current version of MySQL Shell, MySQL Server, and MySQL Router
installed.

Deploy a Sandbox cluster

This example uses MySQL Shell AdminAPI to set up a InnoDB Cluster with three MySQL instances
(one primary and two secondaries), and a bootstrapped standalone MySQL Router with a generate
configuration file. Output was shortened using "...".

$> mysqlsh

mysql-js> dba.deploySandboxInstance(3310)
 ...
mysql-js> dba.deploySandboxInstance(3320)
 ...
mysql-js> dba.deploySandboxInstance(3330)
 ...

mysql-js> \connect root@localhost:3310
 ...

mysql-js> cluster = dba.createCluster("myCluster")
 ...

mysql-js> cluster.addInstance("root@localhost:3320")
 ...
mysql-js> cluster.addInstance("root@localhost:3330")
 ...

mysql-js> cluster.status()
{

20

https://dev.mysql.com/doc/mysql-shell/8.0/en/deploying-production-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/deploying-production-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/use-mysql-shell-execute-script.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/mysql-test-suite.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html

Set Up the Router

 "clusterName": "myCluster",
 "defaultReplicaSet": {
 "name": "default",
 "primary": "127.0.0.1:3310",
 "ssl": "REQUIRED",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:3310": {
 "address": "127.0.0.1:3310",
 "memberRole": "PRIMARY",
 "mode": "R/W",
 "readReplicas": {},
 "replicationLag": "applier_queue_applied",
 "role": "HA",
 "status": "ONLINE",
 "version": "8.0.37"
 },
 "127.0.0.1:3320": {
 "address": "127.0.0.1:3320",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "readReplicas": {},
 "replicationLag": "applier_queue_applied",
 "role": "HA",
 "status": "ONLINE",
 "version": "8.0.37"
 },
 "127.0.0.1:3330": {
 "address": "127.0.0.1:3330",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "readReplicas": {},
 "replicationLag": "applier_queue_applied",
 "role": "HA",
 "status": "ONLINE",
 "version": "8.0.37"
 }
 },
 "topologyMode": "Single-Primary"
 },
 "groupInformationSourceMember": "127.0.0.1:3310"
}

mysql-js> \q

Bye!

Set Up the Router

Next, set up MySQL Router to redirect to these MySQL instances. We'll use bootstrapping (using --
bootstrap), and create a self-contained MySQL Router installation using --directory. This uses
the metadata cache plugin to securely store the credentials.

$> mysqlrouter --bootstrap root@localhost:3310 --directory /tmp/router

Please enter MySQL password for root:
Bootstrapping MySQL Router 8.0.37 (MySQL Community - GPL) instance at '/tmp/router'...

- Creating account(s) (only those that are needed, if any)
- Verifying account (using it to run SQL queries that would be run by Router)
- Storing account in keyring
- Adjusting permissions of generated files
- Creating configuration /tmp/router/mysqlrouter.conf

MySQL Router configured for the InnoDB Cluster 'myCluster'

After this MySQL Router has been started with the generated configuration

 $ mysqlrouter -c /tmp/router/mysqlrouter.conf

21

Testing the Router

InnoDB Cluster 'myCluster' can be reached by connecting to:

MySQL Classic protocol

- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

MySQL X protocol

- Read/Write Connections: localhost:6448
- Read/Only Connections: localhost:6449

$> cd /tmp/router

$> ./start.sh

MySQL Router is now configured and running, and is using the myCluster cluster that we set up
earlier.

Testing the Router

Now connect to MySQL Router as you would any other MySQL Server by connecting to a configured
MySQL Router port.

The following example connects to MySQL Router on port 6446, the port we configured for read-write
connections:

$> mysql -u root -h 127.0.0.1 -P 6446 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3310 |
+--------+

As demonstrated, we connected to MySQL Router using port 6446 but see we are connected to our
MySQL instance on port 3310 (our PRIMARY). Next let's connect to a read-only MySQL instance:

$> mysql -u root -h 127.0.0.1 -P 6447 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3320 |
+--------+

As demonstrated, we connected to MySQL Router using port 6447 but see we are connected to our
MySQL instance on port 3320 (one of our secondaries). The read-only mode defaults to the round-
robin strategy where the next connection refers to a different secondary:

$> mysql -u root -h 127.0.0.1 -P 6447 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3330 |
+--------+

As demonstrated, our second read-only connection to port 6447 connected to a different MySQL
secondary, in this case to port 3330 instead of 3320.

Now test failover by first killing the primary MySQL instance (port 3310) that we connected to above.

$> mysqlsh --uri root@127.0.0.1:6446

22

Testing the Router

mysql-js> dba.killSandboxInstance(3310)

The MySQL sandbox instance on this host in
/home/philip/mysql-sandboxes/3310 will be killed

Killing MySQL instance...

Instance localhost:3310 successfully killed.

You can continue using MySQL Shell to check the connection but let us use the same mysql client
example we did above:

$> mysql -u root -h 127.0.0.1 -P 6446 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3320 |
+--------+

$> mysql -u root -h 127.0.0.1 -P 6447 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3330 |
+--------+

As shown, despite connecting to the same ports (6446 for the primary and 6447 for a secondary),
the underlying ports changed. Our new primary server changed from port 3310 to 3320 while our
secondary changed from 3320 to 3330.

We have now demonstrated MySQL Router performing simple redirects to a list of primary and
secondary MySQL instances.

The updated cluster status after executing dba.killSandboxInstance(3310):

$> mysqlsh --uri root@127.0.0.1:6446

mysql-js> cluster = dba.getCluster("myCluster")
 ...
mysql-js> cluster.status()
{
 "clusterName": "myCluster",
 "defaultReplicaSet": {
 "name": "default",
 "primary": "127.0.0.1:3320",
 "ssl": "REQUIRED",
 "status": "OK_NO_TOLERANCE_PARTIAL",
 "statusText": "Cluster is NOT tolerant to any failures. 1 member is not active.",
 "topology": {
 "127.0.0.1:3310": {
 "address": "127.0.0.1:3310",
 "memberRole": "SECONDARY",
 "mode": "n/a",
 "readReplicas": {},
 "role": "HA",
 "shellConnectError": "MySQL Error 2003: Could not open connection to '127.0.0.1:3310': Can't connect to MySQL server on '127.0.0.1:3310' (111)",
 "status": "(MISSING)"
 },
 "127.0.0.1:3320": {
 "address": "127.0.0.1:3320",
 "memberRole": "PRIMARY",
 "mode": "R/W",
 "readReplicas": {},
 "replicationLag": "applier_queue_applied",
 "role": "HA",

23

Basic Connection Routing

 "status": "ONLINE",
 "version": "8.0.37"
 },
 "127.0.0.1:3330": {
 "address": "127.0.0.1:3330",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "readReplicas": {},
 "replicationLag": "applier_queue_applied",
 "role": "HA",
 "status": "ONLINE",
 "version": "8.0.37"
 }
 },
 "topologyMode": "Single-Primary"
 },
 "groupInformationSourceMember": "127.0.0.1:3320"
}

Router also enables a REST API by default in the generated mysqlrouter.conf at
bootstrap, and by default the following URL displays a swagger.json for your local setup:
https://127.0.0.1:8443/api/20190715/swagger.json. See also Chapter 6, MySQL Router
REST API.

3.3 Basic Connection Routing

The Connection Routing plugin performs connection-based routing, meaning it forwards packets to
the server without inspecting them. This is a simplistic approach that provides high throughput. For
additional general information about connection routing, see Section 1.3, “Connection Routing”.

A simple connection-based routing setup is shown below. These and additional options are
documented under Section 4.3.3, “Configuration File Options”.

[logger]
level = INFO

[routing:secondary]
bind_address = localhost
bind_port = 7001
destinations = foo.example.org:3306,bar.example.org:3306,baz.example.org:3306
routing_strategy = round-robin

[routing:primary]
bind_address = localhost
bind_port = 7002
destinations = foo.example.org:3306,bar.example.org:3306
routing_strategy = first-available

Here we use connection routing to round-robin MySQL connections to three MySQL servers on port
7001 as defined by round-robin routing_strategy. This example also configures the first-available
strategy for two of the servers using port 7002. The first-available strategy uses the first available
server from the destinations list. The number of MySQL instances assigned to each destinations
is up to you as this is only an example. Router does not inspect the packets and does not restrict
connections based on assigned strategy or mode, so it is up the application to determine where to send
read and write requests, which is either port 7001 or 7002 in our example.

Note

Before MySQL Router 8.0, the now deprecated mode option was used instead
of the routing_strategy option that was added in MySQL Router 8.0.

Assuming all three MySQL instances are running, next start MySQL Router by passing in the
configuration file:

$> ./bin/mysqlrouter -config=/etc/mysqlrouter-config.conf

24

Basic Connection Routing

Now MySQL Router is listening to ports 7001 and 7002 and sends requests to the appropriate MySQL
instances. For example:

$> ./bin/mysql --user=root --port 7001 --protocol=TCP

That will first connect to foo.example.org, and then bar.example.org next, then baz.example.org, and
the fourth call goes back to foo.example.org. Instead, we configured port 7002 behavior differently:

$> ./bin/mysql --user=root --port 7002 --protocol=TCP

That first connects to foo.example.org, and additional requests will continue connecting to
foo.example.org until there is a failure, at which point bar.example.org is now used. For additional
information about this behavior, see mode.

25

26

Chapter 4 Configuration

Table of Contents
4.1 Configuration File Syntax .. 27
4.2 Configuration File Locations .. 29
4.3 Configuration Options .. 31

4.3.1 Defining Options Using the Command Line ... 31
4.3.2 MySQL Router Command Line Programs .. 31
4.3.3 Configuration File Options .. 57
4.3.4 Configuration File Example ... 93

4.4 TLS Configuration ... 94

MySQL Router is configured using a required configuration file, additional optional configuration files,
and options available from the command line.

Bootstrapping is the preferred and common approach to generating a MySQL Router configuration
file. For additional information, see --bootstrap. Bootstrapping generates a fully functional
mysqlrouter.conf file.

For command-line syntax related information and options, see Section 4.3.1, “Defining Options Using
the Command Line”.

4.1 Configuration File Syntax
The configuration file format resembles the traditional INI file format with sections and options, but with
a few additional extensions.

Note

Both forward slashes and backslashes are supported. Backslashes are
unconditionally copied, as they do not escape characters.

Comments

The configuration file can contain comment lines. Comment lines start with a hash (#) or semicolon (;)
and continue to the end of the line. Trailing comments are not supported.

Sections

Each configuration file consists of a list of configuration sections where each section contains a
sequence of configuration options. Each configuration option has a name and value. For example:

[section name]
option = value
option = value
option = value

[section name:optional section key]

option = value
option = value
option = value

A configuration file section header starts with an opening bracket ([) and ends with a closing bracket
(]). There can be leading and trailing space characters on the line, which are ignored, but no space
inside the section brackets.

The section header inside the brackets consists of a section name and an optional section key that is
separated from the section header with a colon (:). The combination of section name and section key
is unique for a configuration.

27

Default Section

The section names and section keys consist of a sequence of one or more letters, digits, or
underscores (_). No other characters are allowed in the section name or section key.

A section is similar to a namespace. For example, the user option's meaning depends on its
associated section. A user in the [DEFAULT] section refers to the system user that MySQL Router is
run as, which is also controlled by the --user command line option. Unrelated to that is defining user
in the [metadata_cache] section, which refers to the MySQL user that accesses a MySQL server's
metadata.

Default Section

The special section name DEFAULT (any case) is used for default values for options. Options not found
in a section are looked up in the default section. The default section does not accept a section key.

Options

After a section's start header, there can be a sequence of zero or more option lines where each option
line is of the form:

name = value

Any leading or trailing blank characters on the option name or option value are removed before being
handled. Option names are case-insensitive. Trailing comments are not supported, so in this example
the option routing_strategy is given the value round-robin # Circles back to first
server and generates an error when starting the router.

[routing:round-robin]
Trailing comments are not supported so the following is incorrect
routing_strategy=round-robin # Circles back to first server

Variable Interpolation

Option values support (variable interpolation) using an option name given within braces { and }.
Interpolation is done on retrieval of the option value and not when it is read from the configuration file. If
a variable is not defined then no substitutions are done and the option value is read literally.

Consider this sample configuration file:

[DEFAULT]
prefix = /usr/

[sample]
bin = {prefix}bin/{name}
lib = {prefix}lib/{name}
name = magic
directory = C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afb23}

Here the value of bin is "/usr/bin/magic", the value of lib is "/usr/lib/magic", and the value of
directory is "C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afb23}" because a variable named
"{3a339172-6898-11e6-8540-9f7b235afb23}" is not defined.

Predefined variables

MySQL Router defines predefined variables that are available to the configuration file. Variables use
braces, such as {program} for the program predefined variable.

Table 4.1 Predefined variables

Name Description

program Name of the program, normally mysqlrouter

origin Path to directory where binary is located

logging_folder Path to folder for log files

plugin_folder Path to folder for plugins

28

Command Line Related Details

Name Description

runtime_folder Path to folder for runtime data

config_folder Path to folder for configuration files

Command Line Related Details

For command-line syntax related information and options, see Section 4.3.1, “Defining Options Using
the Command Line”.

4.2 Configuration File Locations
MySQL Router scans for the default configuration files at startup, and optionally loads user-defined
configuration files at runtime from the command line.

Default Configuration File Locations

By default, MySQL Router scans specific locations for its configuration files that depend on the platform
and how MySQL Router was set up.

You can alter the default locations at compile time by using the -DROUTER_CONFIGDIR=<path>
option. You could also edit cmake/settings.cmake to change the default locations before compiling
MySQL Router, thus adding new locations or exceptions for specific platforms.

Execute mysqlrouter --help to see the default configuration file locations (and their availability) on
your system. For example:

$> mysqlrouter --help

...

Start MySQL Router.

Configuration read from the following files in the given order (enclosed
in parentheses means not available for reading):
 (/usr/local/mysql-router/mysqlrouter.conf)
 /Users/philip/.mysqlrouter.conf
Plugins Path:
 /usr/local/lib/mysqlrouter
Default Log Directory:
 /usr/local/mysql-router
Default Persistent Data Directory:
 /usr/local/mysql-router/data
Default Runtime State Directory:
 /usr/local/mysql-router/run

Usage: mysqlrouter [-v|--version] [-h|--help]

...

Important

The default configuration file is not loaded if a user-defined configuration file is
passed in with the --config option.

On Linux, MySQL Router scans the following locations by default, although these locations are system
dependent:

1. /etc/mysqlrouter/mysqlrouter.conf

Note

Unlike MySQL server, the backward compatible path "/etc/
mysqlrouter.conf" is not supported.

29

User-Defined and Extra Configuration Files

2. $HOME/.mysqlrouter.conf

Note

For backward compatibility, MySQL Router also looks for the .ini variant in each
directory. In doing so, Router looks in the initial directory for the .conf version,
then checks for a .ini version, and then repeats the process in the next directory
which is typically the user's home directory on the system.

User-Defined and Extra Configuration Files

Two command line options help control these configuration file locations:

• --config (or -c): Read the base configuration from this file, and do not use or scan the default file
paths.

Example use: when generating a standalone MySQL Router installation with the --directory
bootstrap option, the generated start.sh passes this option to the generated mysqlrouter.conf
inside that directory.

• --extra-config (or -a): Read this additional configuration file after the configuration files are read
from either the default locations, or from files specified using the --config option.

For example:

$> mysqlrouter --config /custom/path/to/router.conf --extra-config /another/config.conf

Multiple extra configuration options can be passed in and the files are loaded in the order they are
entered, with --config options being loaded before the --extra-config options. For example:

$> mysqlrouter --extra-config a.conf --config b.conf --extra-config c.conf

In the above example, b.conf is loaded first, and then a.conf and c.conf, in that order. Also, the
default configuration file, such as /etc/mysqlrouter/mysqlrouter.conf, is not loaded because
--config was used.

Each loaded configuration file overrides configuration settings from the previously read configuration
files.

Default Configuration File Locations (Linux)

The following lists default file location for the router to read configuration files on popular Linux
platforms.

Note

Execute mysqlrouter --help to see the default configuration file locations
(and their availability) on your system.

• Default system-wide installation under /usr/local : /usr/local/etc/mysqlrouter.conf

• RPM and Debian : /etc/mysqlrouter/mysqlrouter.conf

• On all systems, a bootstrapped standalone installation using --directory adds
mysqlrouter.conf into the directory defined by --directory.

Default Configuration File Locations (Windows)

Default file locations that MySQL Router searches for configuration files on Windows.

Note

Execute mysqlrouter.exe --help to see the default configuration file
locations (and their availability) on your system.

30

Configuration Options

• Default system-wide installation under C:\ProgramData\MySQL\MySQL Router : C:
\ProgramData\MySQL\MySQL Router\mysqlrouter.conf

• In addition: C:\Users\username\AppData\Roaming\mysqlrouter.conf where username is
replaced with your system's user.

• In addition to mysqlrouter.conf, for backwards compatibility the system also looks for mysqlrouter.ini

• With --directory: a bootstrapped standalone installation using --directory adds
mysqlrouter.conf into the directory defined by --directory.

4.3 Configuration Options
Configuration file options and command-line options serve different purposes and are documented in
separate locations.

When bootstrapping, the generated configuration file's settings depend on the bootstrap options
passed into mysqlrouter. For example, passing in --conf-use-sockets enables socket
connections by defining socket for each route in the generated configuration file. Or, --directory
adds all generated files and subdirectories to a single directory and adjusts the generated configuration
file values accordingly.

4.3.1 Defining Options Using the Command Line

Options can be configured and overridden at runtime using these different methods:

• Using standard runtime options as shown by mysqlrouter --help; how it affects the generated
configuration file depends on the option. For example:

$> mysqlrouter --bootstrap foo@bar.com --connect-timeout=20

• Using the form --section[:section_key].option_name=option_value at runtime;
this does not affect the generated configuration file. This is typically used for testing as using a
configuration file is preferred. For example:

$> mysqlrouter -c mysqrouter.conf --logger.level=debug

This feature was added in MySQL Router 8.0.28.

• Using the --conf-set-option=section[:section_key].option_name=option_value
option that does alter the generated configuration file. This is used while bootstrapping to add or
override a configuration option. It has precedence over other forms.

$> mysqlrouter --bootstrap foo@bar.com \
 --conf-set-option=logger.level=debug \
 --conf-set-option=DEFAULT.unknown_config_option=warning \
 --conf-set-option=DEFAULT.connect_timeout=20 \
 --connect-timeout=10

This sets connect_timeout to 20 in the generated mysqlrouter.conf because --conf-set-
option always takes precedence.

This feature was added in MySQL Router 8.0.28.

4.3.2 MySQL Router Command Line Programs

This section describes the MySQL Router commands. The mysqlrouter command is used for most
tasks, including bootstrapping and running MySQL Router, and mysqlrouter_plugin_info is an
optional debugging tool.

4.3.2.1 mysqlrouter — Command Line Options

• mysqlrouter Option Summaries

31

MySQL Router Command Line Programs

• mysqlrouter Option Descriptions

MySQL Router accepts command line options that are passed into mysqlrouter to affect its
behavior, or to bootstrap router based on an InnoDB Cluster.

When starting Router, you can optionally use --config to pass in the main configuration file's location
(otherwise the default location is used) and --extra-config for an additional configuration file.

Bootstrapping command line options affect the generated files and directories that are used when
starting MySQL Router.

mysqlrouter Option Summaries

Table 4.2 General Options

Option Name Description Introduced

--conf-set-option Sets a value for a generated
configuration option during
bootstrap

8.0.28

--config Read configuration options from
the provided file

--core-file Write core file on Router crashes 8.0.31

--extra-config Read this file after configuration
files are read from either default
locations or from files specified
by the --config option

--help Display help text and exit

--pid-file Location to store the PID file 8.0.20

--user Run mysqlrouter as the user
having the defined user name or
numeric user id

--version Display version information and
exit

Table 4.3 Bootstrapping Options

Option Name Description Introduced

--account The MySQL user account used
by Router after bootstrapping

8.0.19

--account-create Bootstrapped account creation
behavior

8.0.19

--account-host The host pattern used for
bootstrapped accounts

8.0.12

--bootstrap Bootstrap and configure Router
for operation with a MySQL
InnoDB cluster

--bootstrap-socket Connect to the MySQL metadata
server through a Unix domain
socket, used in conjunction with
--bootstrap

--conf-base-port Base port to use for listening
Router ports

--conf-bind-address IP address of the interface to
which router's listening sockets
should bind

32

MySQL Router Command Line Programs

Option Name Description Introduced

--conf-skip-tcp Whether to disable binding
of a TCP port for incoming
connections

--conf-target-cluster Sets the target_cluster metadata
option to a cluster type

8.0.27

--conf-target-cluster-by-name Sets the target_cluster metadata
option to a specific cluster name

8.0.27

--conf-use-gr-notifications Enables Group Replication
notifications

8.0.17

--conf-use-sockets Whether to use Unix domain
sockets

--connect-timeout Number of seconds before
connection attempts to a
metadata server are considered
timed out

--directory Creates a self-contained
directory for a new instance of
the Router

--disable-rest Disables generation of REST
API configuration details into the
generated mysqlrouter.conf file

8.0.22

--force Force reconfiguration of a
possibly existing instance of the
router

--force-password-validation When creating a user account
automatically, do not skip the
validate_password mechanism

--https-port MySQL Router REST API HTTP
server port

8.0.22

--master-key-reader Script that returns the master key
to STDOUT

8.0.12

--master-key-writer Script that reads the master key
from STDIN

8.0.12

--name Gives a symbolic name for the
router instance

--password-retries The number of retries to use for
generating the Router's user
password

--read-timeout Number of seconds before read
operations to a metadata server
are considered timed out

--report-host Router's hostname; overrides
auto-detection

8.0.12

--strict Enables bootstrap strict mode 8.0.19

Table 4.4 SSL Options

Option Name Description Introduced

--client-ssl-cert The path to the SSL public key
certificate file, in PEM format,

8.0.23

33

MySQL Router Command Line Programs

Option Name Description Introduced
used to encrypt client-to-router
connections

--client-ssl-cipher Which ciphers are allowed
between client and MySQL
Router, defaults to a secure list
of SSL ciphers

8.0.23

--client-ssl-curves Which curves are allowed
between the client and MySQL
Router, defaults to a secure list
of SSL curves

8.0.23

--client-ssl-dh-params Filename of the DH parameter
file. Not set by default

8.0.23

--client-ssl-key The path name of the SSL
private key file, in PEM format,
used to encrypt client-to-router
connections

8.0.23

--client-ssl-mode Controls if connections from
the client to MySQL Router
must be encrypted, defaults to
PREFERRED if not set

8.0.23

--server-ssl-ca The path to the Certificate
Authority (CA) certificate file in
PEM format

8.0.23

--server-ssl-capath The path to the directory that
contains the trusted SSL
Certificate Authority (CA)
certificate files in PEM format.

8.0.23

--server-ssl-cipher SSL Cipher for Server 8.0.23

--server-ssl-crl The path to the file containing the
certificate revocation lists in PEM
format

8.0.23

--server-ssl-crlpath The path to the directory
that contains the certificate
revocation list files in PEM format

8.0.23

--server-ssl-curves SSL Curves for Server 8.0.23

--server-ssl-mode Controls if connections from
router to server must be
encrypted.

8.0.23

--server-ssl-verify Verification of the SSL
certificates presented to the
router by the server

8.0.23

--ssl-ca Path to SSL Certificate Authority
file to verify server's certificate
against

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert The client-side SSL certificate
to facilitate client-side
authentication during bootstrap

34

MySQL Router Command Line Programs

Option Name Description Introduced

--ssl-cipher A colon-separated list of SSL
ciphers to allow, if SSL is
enabled

--ssl-crl Path to SSL CRL file to use
when verifying server certificate

--ssl-crlpath Path to directory containing SSL
CRL files to use when verifying
server certificate

--ssl-key The private SSL key to facilitate
client-side authentication during
bootstrap

--ssl-mode Desired security state when
connecting to the metadata
server during bootstrap and
normal operation. Analogous to
--ssl-mode in mysql client

--tls-version Comma-separated list of TLS
versions to request, if SSL is
enabled

Table 4.5 Windows Services Options

Option Name Description

--clear-all-credentials Clear all stored credentials

--install-service Install MySQL Router as service and set it to
automatically start when Windows restarts; service
name defaults to MySQLRouter (Windows only)

--install-service-manual Install MySQL Router as service that can be
manually started; service name defaults to
MySQLRouter (Windows only)

--remove-credentials-section Remove a section's credentials

--remove-service Remove MySQL Router as a Windows service;
service name defaults to MySQLRouter

--service Start MySQL Router as a Windows service

--update-credentials-section Update a section's credentials

mysqlrouter Option Descriptions

• --version, -V

Command-Line Format --version , -V

Displays the version number and related information of the application, and exits. For example:

$> mysqlrouter --version

MySQL Router v8.0.42 on Linux (64-bit) (GPL community edition)

• --help, -?

Command-Line Format --help , -?

Display help and informative information, and exit.

35

MySQL Router Command Line Programs

The --help option has an added benefit. Along with the explanation of each of the options, the --
help option also displays the paths used to find the configuration file, and also several default paths.
The following excerpt of the --help output shows an example from a Ubuntu 16.04 machine:

$> mysqlrouter --help

...

Start MySQL Router.

Configuration read from the following files in the given order (enclosed
in parentheses means not available for reading):
 (/etc/mysqlrouter/mysqlrouter.conf)
 /home/philip/.mysqlrouter.conf
Plugin Path:
 /usr/lib/x86_64-linux-gnu/mysqlrouter
Default Log Directory:
 /var/log/mysqlrouter
Default Persistent Data Directory:
 /var/lib/mysqlrouter
Default Runtime State Directory:
 /run/mysqlrouter

Usage: mysqlrouter [-V|--version] [-?|--help]
...

The configuration section shows the order for the paths that may be used for reading the
configuration file. In this case, only the second file is accessible.

• --bootstrap URI, -B URI

Command-Line Format --bootstrap URI, -B URI

Type String

The main option to perform a bootstrap of MySQL Router by connecting to the InnoDB Cluster
metadata server at the URI provided. MySQL Router configures itself based on the information
retrieved from the InnoDB Cluster metadata server. A password is prompted for if needed. If
a username is not provided as part of the URI then the default user name "root" is used. See
Connecting Using URI-Like Connection Strings for information on using a path to specify a server
instance.

Note

While --bootstrap accepts a URI for TCP/IP connections, using the --
bootstrap-socket option with a local Unix domain socket name replaces
the "host:port" part of the URI passed to the --bootstrap option with the
socket on the same machine.

By default, the bootstrap process performs a system-wide configuration of MySQL Router. Only
one instance of MySQL Router can be configured for system-wide operation. The system instance
of MySQL Router has a router_name of "system". If additional instances are desired, use the --
directory option to create self-contained MySQL Router installations.

URI: a server instance from an InnoDB Cluster to fetch metadata information from. If the provided
URI is a read-only instance, MySQL Router automatically reconnects to a read-write instance in the
InnoDB Cluster so it can register MySQL Router.

If a configuration file already exists when you start MySQL Router with the --bootstrap, the
existing router_id in that file is reused, and a reconfiguration process occurs. The configuration

36

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri

MySQL Router Command Line Programs

file is regenerated from scratch and the MySQL Router's metadata server account is recreated,
although with the same name.

During the reconfiguration process, all changes made to an existing configuration file are
discarded. To customize a configuration file and still retain the ability of automatic reconfiguration
(bootstrapping), you can use the --extra-config command line option to specify an additional
configuration file that is read after the main configuration file. These configuration options are used
because this extra configuration file is loaded after the main configuration file.

The bootstrap process creates a new MySQL user account with a randomly generated password
to use by that specific MySQL Router instance. This account is used by MySQL Router when
connecting to the metadata server and InnoDB cluster to fetch information about its current state. For
detailed information about this user including how its password is stored and the MySQL privilege it
requires, see documentation for the MySQL user option.

The generated configuration file is named mysqlrouter.conf, and its location depends on the
type of instance being configured, the system, and the package. For system-wide installations,
the generated configuration file is added to the system's configuration directory such as /etc or
%PROGRAMDATA%\MySQL\MySQL Router\. Executing mysqlrouter --help will display this
location.

The --user option is required if executing a bootstrap with a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument such as --
user=root.

The minimum GRANT permissions required to execute --bootstrap are:

GRANT CREATE USER ON *.* TO 'bootstrapuser'@'%' WITH GRANT OPTION;
GRANT SELECT, INSERT, UPDATE, DELETE, EXECUTE ON mysql_innodb_cluster_metadata.* TO 'bootstrapuser'@'%';
GRANT SELECT ON mysql.user TO 'bootstrapuser'@'%';
GRANT SELECT ON performance_schema.replication_group_members TO 'bootstrapuser'@'%';
GRANT SELECT ON performance_schema.replication_group_member_stats TO 'bootstrapuser'@'%';
GRANT SELECT ON performance_schema.global_variables TO 'bootstrapuser'@'%';

Using --bootstrap adds default values to the generated MySQL Router configuration file, and
some of these default values depend on other conditions. Listed below are some of the conditions
that affect the generated default values, where default is defined by passing in --bootstrap by
itself.

Table 4.6 Conditions that affect default --bootstrap values

Condition Description

--conf-base-port Modifies generated bind_port values for each connection
type.

By default, generated bind_port values are as follows: For
the classic protocol, Read-Write uses 6446 and Read-Only uses
6447, and for the X protocol Read-Write uses 6448 and Read-
Only uses 6449.

As of Router 8.0.24: Setting --conf-base-port to 0 changes
the default bind_port values to previous (before 8.0.24)
defaults, which were as follows: For the classic protocol, Read-
Write uses 6446 and Read-Only uses 6447, and for the X
protocol Read-Write uses 64460 and Read-Only uses 64470.

--conf-use-sockets Inserts socket definitions for each connection type.

--conf-skip-tcp TCP/IP connection definitions are not defined.

--directory Affects all file paths, and also generates additional files.

37

MySQL Router Command Line Programs

Condition Description

Other This list is not exhaustive, other options and conditions also
affect the generated values.

• --bootstrap-socket socket_name

Command-Line Format --bootstrap-socket socket_name

Platform Specific Linux

Used in conjunction with --bootstrap to bootstrap using a local Unix domain socket instead
of TCP/IP. The --bootstrap-socket value replaces the "host:port" part in the --bootstrap
definition with the assigned socket name for connecting to the MySQL metadata server using Unix
domain sockets. This is the MySQL instance that is being bootstrapped from, and this instance must
be on the same machine if sockets are used. For additional details about how bootstrapping works,
see --bootstrap.

This option is different than the --conf-use-sockets command line option that sets the socket
configuration file option during the bootstrap process.

This option is not available on Windows.

• --core-file

Command-Line Format --core-file[={0|1}]

Introduced 8.0.31

Type Boolean

Default Value 0

Write a core file if mysqlrouter dies. The name and location of the core file is system dependent.
On Linux, a core file named core.pid is written to the current working directory of the process.
pid represents the process ID of the server process. On macOS, a core file named core.pid is
written to the /cores directory, if the process has the com.apple.security.get-task-allow
entitlement. On Solaris, use the coreadm command to specify where to write the core file and how
to name it. On Windows, a minidump file named mysqlrouter.{pid}.dmp is written to the current
working directory of the process.

• --directory dir_path, -d dir_path

Command-Line Format --directory dir_path, -d dir_path

Type String

Specifies that a self-contained MySQL Router installation will be created at the defined directory
instead of configuring the system-wide router instance. This also allows multiple router instances to
be created on the same system.

The self-contained directory structure for Router is:

$path/start.sh
$path/stop.sh
$path/mysqlrouter.pid
$path/mysqlrouter.conf
$path/mysqlrouter.key
$path/run
$path/run/keyring
$path/data
$path/log

38

MySQL Router Command Line Programs

$path/log/mysqlrouter.log

If this option is specified, the keyring file is stored under the runtime state directory of that instance,
under run/ in the specified directory, as opposed to the system-wide runtime state directory.

If --conf-use-sockets is also enabled then the generated socket files are also added to this
directory.

• --master-key-writer

Command-Line Format --master-key-writer file_path

Introduced 8.0.12

Type String

This optional bootstrap option accepts a script that reads the master key from STDIN. It also uses
the ROUTER_ID environment variable set by MySQL Router before the master-key-writer
script is called.

The master-key-writer and master-key-reader options must be used together, and using
them means the master_key_file option must not be defined in mysqlrouter.conf as the
master key is not written to the mysqlrouter.key master key file.

This is also written to the generated MySQL Router configuration file as the master-key-writer
[DEFAULT] option.

Example contents of a bash script named writer.sh used in our example:

#!/bin/bash

KID_=$(keyctl padd user ${ROUTER_ID} @us <&0)

Example usage:

$> mysqlrouter --bootstrap=127.0.0.1:3310 --master-key-reader=./reader.sh
 --master-key-writer=./writer.sh

This also affects the generated mysqlrouter.conf, for example:

[DEFAULT]
...
master-key-reader=reader.sh
master-key-writer=writer.sh

• --master-key-reader

Command-Line Format --master-key-reader file_path

Introduced 8.0.12

Type String

This optional bootstrap option accepts a script that writes the master key to STDOUT. It also uses
the ROUTER_ID environment variable set by MySQL Router before the master-key-reader
script is called.

The master-key-reader and master-key-writer options must be used together, and using
them means the master_key_file option must not be defined in mysqlrouter.conf as the

39

MySQL Router Command Line Programs

master key is not written to the mysqlrouter.key master key file, and instead uses the value
provided by this option's script.

This is also written to the generated MySQL Router configuration file as the master-key-reader
[DEFAULT] option.

Example contents of a bash script named reader.sh used in our example:

#!/bin/bash

KID_=$(keyctl search @us user ${ROUTER_ID} 2>/dev/null)
if [! -z $KID_]; then
 keyctl pipe $KID_
fi

Example usage:

$> mysqlrouter --bootstrap=127.0.0.1:3310 --master-key-reader=./reader.sh
 # Or, multiple hosts--master-key-writer=./writer.sh

This also affects the generated mysqlrouter.conf, for example:

[DEFAULT]
...
master-key-reader=reader.sh
master-key-writer=writer.sh

• --strict

Command-Line Format --strict

Introduced 8.0.19

Type String

Enables strict mode, which for example causes the bootstrap --account user verification check to
stop the bootstrap process rather than only emit a warning and continue if the supplied user does not
pass the check.

• --account

Command-Line Format --account username

Introduced 8.0.19

Type String

A bootstrap option to specify the MySQL user to use, which either reuses an existing MySQL user
account or creates one; behavior controlled by the related --account-create option.

With --account, usage favors ease of management over ease of deployment as multiple routers
may share the same account, and the username and password are manually defined rather than
auto-generated.

Setting this option triggers a password prompt for this account regardless of whether the password is
available in the keyring.

Bootstrapping without passing in --account does not recreate an existing MySQL server account.
Prior to MySQL Router 8.0.18, bootstrapping would DROP the existing user and recreate it.

Using this option assumes the user has sufficient access rights for Router because the bootstrap
process does not attempt to add missing grants to existing accounts. The bootstrap process does
verify the permissions and outputs information to the console of the failed check. The bootstrap40

MySQL Router Command Line Programs

process continues despite these failed checks unless the optional --strict option is also used.
Example required permissions:

GRANT USAGE ON *.* TO `theuser`@`%`
GRANT SELECT, EXECUTE ON `mysql_innodb_cluster_metadata`.* TO `theuser`@`%`
GRANT INSERT, UPDATE, DELETE ON `mysql_innodb_cluster_metadata`.`routers` TO `theuser`@`%`
GRANT INSERT, UPDATE, DELETE ON `mysql_innodb_cluster_metadata`.`v2_routers` TO `theuser`@`%`
GRANT SELECT ON `performance_schema`.`global_variables` TO `theuser`@`%`
GRANT SELECT ON `performance_schema`.`replication_group_member_stats` TO `theuser`@`%`
GRANT SELECT ON `performance_schema`.`replication_group_members` TO `theuser`@`%`

A password is not accepted from the command-line. For example, passing in "foo:bar" assumes
"foo:bar" is the desired username rather than user foo with the password bar.

• --account-create

Command-Line Format --account-create behavior

Introduced 8.0.19

Type String

Default Value if-not-exists

Valid Values if-not-exists

always

never

Specify the account creation policy to help guard against accidentally bootstrapping with the wrong
user account. Potential values are:

• if-not-exists (default): Bootstrap either way; reuse the account if it exists, otherwise create it.

• always: Only bootstrap if the account does not already exist; and create it.

• never: Only bootstrap if the account already exists; and reuse it.

This option requires that the --account option is also used, and that --account-host is not
used.

• --account-host

Command-Line Format --account-host host_pattern

Introduced 8.0.12

Type String

41

MySQL Router Command Line Programs

Default Value %

The host pattern used for accounts created by MySQL Router during the bootstrap process. This is
optional and defaults to '%'.

Pass in this option multiple times to define multiple patterns, in which case the generated MySQL
accounts use the same password.

Note

Router does not perform sanity checking and does not ensure that the pattern
authorizes Router to connect.

Note

Bootstrapping reuses existing Router accounts by dropping and recreating
the user, and this user recreation process applies to every host.

Examples:

One host
$> mysqlrouter --bootstrap localhost:3310 --account-host host1

Or, multiple hosts
$> mysqlrouter --bootstrap localhost:3310 --account-host host1 --account-host host2
 --account-host host3

• --conf-use-sockets

Command-Line Format --conf-use-sockets

Platform Specific Linux

Enables local Unix domain sockets.

This option is used while bootstrapping, and enabling it adds the socket option to the generated
configuration file.

The name of the generated socket file depends on the mode and protocol options. With the classic
protocol enabled, the file is named mysql.sock in read-write mode, and mysqlro.sock in read-
only mode. With the X Protocol enabled, the file is named mysqlx.sock in read-write mode, and
mysqlxro.sock in read-only mode.

This option is not available on Windows.

• --conf-use-gr-notifications

Command-Line Format --conf-use-gr-notifications

Introduced 8.0.17

Enables the use_gr_notifications [metadata_cache] option during bootstrap.
When enabled, Router is asynchronously notified about most cluster changes. See
use_gr_notifications for more information. In addition, using this option sets ttl=60 and
auth_cache_refresh_interval=60.

• --pid-file path

Command-Line Format --pid-file path

Introduced 8.0.2042

MySQL Router Command Line Programs

Type String

Sets location of the PID file. This can be set in three different ways (in order of precedence): this
--pid-file command-line option, setting pid_file in Router's configuration file, or defining the
ROUTER_PID environment variable.

If --bootstrap is specified, then setting --pid-file causes Router to fail. This is unlike ROUTER_PID
and the pid_file configuration option, which are ignored if --bootstrap is specified.

If --bootstrap is not specified, then the following cause Router to fail: the --pid-file already exists,
pid_file or ROUTER_PID are set but empty, or if Router can't write the PID file.

• --report-host

Command-Line Format --report-host hostname

Introduced 8.0.12

Type String

Optionally define Router's hostname instead of relying on auto-detection to determine the externally
visible hostname registered to metadata during the bootstrap process.

Router does not check or confirm that the supplied hostname is reachable, but does use RFC 1123
to validate host names, and RFC 2181 to validate addresses.

Note

Before 8.0.23, validation checked the hostname string for illegal characters
where only alphanumeric, '-', '.', and '_' characters were allowed. For example,
this meant that IPv6 addresses were not allowed.

The supplied hostname is written to the host_name field of the
mysql_innodb_cluster_metadata.hosts table in the MySQL InnoDB cluster metadata store.

• --conf-skip-tcp

Command-Line Format --conf-skip-tcp

Platform Specific Linux

Skips configuration of a TCP port for listening to incoming connections. See also --conf-use-
sockets.

This option is not available on Windows.

• --conf-base-port port_num

Command-Line Format --conf-base-port port_num

Type Integer

Default Value 0

Base (first) value used for the listening TCP ports by setting bind_port for each bootstrapped
route.

This value is used for the classic read-write route, and each additional allocated port is incremented
by a value of one. The port order set is classic read-write / read-only, and then x read-write / read-
only.

As of Router 8.0.24: Setting --conf-base-port to 0 changes the default bind_port values to
previous (before 8.0.24) defaults, which were as follows: For the classic protocol, Read-Write uses

43

MySQL Router Command Line Programs

6446 and Read-Only uses 6447, and for the X protocol Read-Write uses 64460 and Read-Only uses
64470.

Example usage:

Example without --conf-base-port
$> mysqlrouter --bootstrap root@localhost:3310
...
Classic MySQL protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

X protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:6448
- Read/Only Connections: localhost:6449

Example demonstrating --conf-base-port set to 0
$> mysqlrouter --bootstrap root@localhost:3310 --conf-base-port 0
...
Classic MySQL protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

X protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:64460
- Read/Only Connections: localhost:64470

• --conf-bind-address address

Command-Line Format --conf-bind-address address

Type String

Default Value 0.0.0.0

Modifies the bind_address value set by --bootstrap in the generated Router configuration file.
By default, bootstrapping sets bind_address=0.0.0.0 for each route, and this option changes
that value.

Note

The default bind_address value is 127.0.0.1 if bind_address is not
defined.

• --read-timeout num_seconds

Command-Line Format --read-timeout num_seconds

Type Integer

Default Value 30

Number of seconds before read operations to a metadata server are considered timed out.

This affects read operations during both the bootstrap process, and also affects normal
MySQL Router operations by setting the associated read_timeout option in the generated
mysqlrouter.conf.

This option is set under the [DEFAULT] namespace.

• --connect-timeout num_seconds

Command-Line Format --connect-timeout num_seconds

Type Integer
44

MySQL Router Command Line Programs

Default Value 30

Number of seconds before connection attempts to a metadata server are considered timed out.

This affects connections during both the bootstrap process, and also affects normal MySQL
Router operations by setting the associated connect_timeout option in the generated
mysqlrouter.conf.

There are two connect_timeout variants. The metadata server variant is defined under the
[DEFAULT] namespace, while the MySQL server variant is defined under the [routing]
namespace.

• --user {user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user {user_name|user_id}, -u
{user_name|user_id}

Platform Specific Linux

Type String

Run mysqlrouter as the user having the name user_name or the numeric user ID user_id.
“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.
When bootstrapping, all generated files are owned by this user, and this also sets the associated
user option.

This system user is defined in the configuration file under the [DEFAULT] namespace. For
additional information, see the user option's documentation that --user configures.

The --user option is required if executing a bootstrap as a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument, such as --
user=root.

This option is not available on Windows.

• --name router_name

Command-Line Format --name router_name

Type String

Default Value system

On initial bootstrap, specifies a symbolic name for a self-contained Router instance. This option is
optional, and is used with --directory. When creating multiple instances, the names must be
unique.

• --force-password-validation

Command-Line Format --force-password-validation

Platform Specific Linux

By default, MySQL Router skips the MySQL Server's validate_password mechanism and instead
Router generates and uses a STRONG password based on known validate_password default
settings. This is because validate_password can be configured by the user and Router can not take
into account unusual custom settings.

This option ensures that password validation (validate_password) is not skipped for generated
passwords, and it is disabled by default.

45

MySQL Router Command Line Programs

• --password-retries num_retries

Command-Line Format --password-retries num_retries

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 10000

Specifies the number of times MySQL Router should attempt to generate a password when creating
user account with the password validation rules. The default value is 20. The valid range is 1 to
10000.

The most likely reason for failure is due to custom validate_password settings with unusual
requirements such as a 50 character minimum. In that fail scenario, either --force-password-
validation is set to true and/or the mysql_native_password MySQL Server plugin is disabled
(this plugin allows bypassing validation).

• --force

Command-Line Format --force

Force a reconfiguration over a previously configured router instance on the host.

• --ssl-mode mode

Command-Line Format --ssl-mode mode

Type String

Default Value PREFERRED

Valid Values PREFERRED

DISABLED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

SSL connection mode for use during bootstrap and normal operation when connecting to the
metadata server. Analogous to --ssl-mode in the mysql client.

During bootstrap, all connections to metadata servers made by the Router will use the SSL options
specified. If ssl_mode is not specified in the configuration, it will default to PREFERRED. During
normal operation, after Router is launched, its Metadata Cache plugin will read and honor all
configured SSL settings.

When set to a value other than the default (PREFERRED), an ssl_mode entry is inserted under the
[metadata_cache] section in the generated configuration file.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
PREFERRED is the default value. As with the mysql client, this value is case-insensitive.

The configuration file equivalent is documented separately at ssl_mode.

• --ssl-cert file_path

Command-Line Format --ssl-cert file_path

46

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

MySQL Router Command Line Programs

Type String

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-
side authentication during the bootstrap process. This directly matches and uses functionality of the
MySQL client's --ssl-cert option.

Like --ssl-key, this option is only used during bootstrap that uses a root account. It is useful when
the root account was created with REQUIRE X509, and therefore logging in as root requires the
client to authenticate itself.

• --ssl-key file_path

Command-Line Format --ssl-key file_path

Type String

The path name of the SSL private key file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process. This directly matches and uses functionality of the
MySQL client's --ssl-key option.

Like --ssl-cert, this option is only used during a bootstrap process that uses a root account. It
is useful when the root account was created with REQUIRE X509, and therefore logging in as root
requires the client to authenticate itself.

• --ssl-cipher ciphers

Command-Line Format --ssl-cipher ciphers

Type String

Default Value

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

• --tls-version versions

Command-Line Format --tls-version versions

Type String

Default Value

A comma-separated (",") list of TLS versions to request, if SSL is enabled.

• --ssl-ca file_path

Command-Line Format --ssl-ca file_path

Type String

Default Value

Path to the SSL CA file to verify a server's certificate against.

• --ssl-capath dir_path

Command-Line Format --ssl-capath dir_path

Type String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

47

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key

MySQL Router Command Line Programs

• --ssl-crl file_path

Command-Line Format --ssl-crl file_path

Type String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

• --ssl-crlpath dir_path

Command-Line Format --ssl-crlpath dir_path

Type String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

• --client-ssl-mode mode

Command-Line Format --client-ssl-mode

Introduced 8.0.23

Type String

Default Value PREFERRED

Valid Values PREFERRED

DISABLED

PASSTHROUGH

REQUIRED

SSL connection mode for use during bootstrap and normal operation when connecting between
MySQL Router and client.

During bootstrap, all connections to clients made by the Router will use the SSL options specified. If
client_ssl_mode is not specified in the configuration, it defaults to PREFERRED.

The configuration file equivalent is documented separately at client_ssl_mode.

• --client-ssl-cert file_path

Command-Line Format --client-ssl-cert file_path

Introduced 8.0.23

Type String

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-
side authentication during the bootstrap process.

Like --client-ssl-key, this option is only used during bootstrap that uses a root account. It is
useful when the root account was created with REQUIRE X509, and therefore logging in as root
requires the client to authenticate itself.

• client-ssl-curves

Command-Line Format --client-ssl-curves

48

MySQL Router Command Line Programs

Introduced 8.0.23

Type String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

• --client-ssl-key file_path

Command-Line Format --client-ssl-key file_path

Introduced 8.0.23

Type String

The path name of the SSL private key file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process.

Like --client-ssl-cert, this option is only used during a bootstrap process that uses a root
account. It is useful when the root account was created with REQUIRE X509, and therefore logging
in as root requires the client to authenticate itself.

• --client-ssl-cipher ciphers

Command-Line Format --client-ssl-cipher

Introduced 8.0.23

Type String

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

• client-ssl-dh-params

Command-Line Format --client-ssl-dh-params=filepath

Introduced 8.0.23

Type String

Filename of the DH parameter file. If specified and not empty, the DH parameters from this file are
used instead of internal default DH parameters. Format the DH param file in PEM format.

• --server-ssl-mode mode

Command-Line Format --server-ssl-mode

Introduced 8.0.23

Type String

Default Value AS_CLIENT

Valid Values AS_CLIENT

DISABLED

PREFERRED

49

MySQL Router Command Line Programs

REQUIRED

SSL connection mode for use during bootstrap and normal operation when connecting between
MySQL Router and server.

During bootstrap, all connections to servers made by the Router will use the SSL options specified. If
server_ssl_mode is not specified in the configuration, it defaults to PREFERRED.

The configuration file equivalent is documented separately at server_ssl_mode.

• --server-ssl-cipher ciphers

Command-Line Format --server-ssl-cipher

Introduced 8.0.23

Type String

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

• --server-ssl-ca file_path

Command-Line Format --server-ssl-ca file_path

Introduced 8.0.23

Type String

Default Value

Path to the SSL CA file to verify a server's certificate against.

• --server-ssl-capath dir_path

Command-Line Format --server-ssl-capath dir_path

Introduced 8.0.23

Type String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

• --server-ssl-crl file_path

Command-Line Format --server-ssl-crl file_path

Introduced 8.0.23

Type String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

• --server-ssl-crlpath dir_path

Command-Line Format --server-ssl-crlpath dir_path

Introduced 8.0.23

Type String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

50

MySQL Router Command Line Programs

• server-ssl-curves

Command-Line Format --server-ssl-curves

Introduced 8.0.23

Type String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

• --server-ssl-verify dir_path

Command-Line Format --server-ssl-verify

Introduced 8.0.23

Type String

Default Value DISABLED

Valid Values DISABLED

VERIFY_CA

VERIFY_IDENTITY

Verification of the SSL certificates presented to the router by the server

• DISABLED: the connection fails if the server does not provide a certificate in the handshake.

• VERIFY_CA: the connection fails if the server's certificate does not match a CA trusted by MySQL
Router.

• VERIFY_IDENTITY: the connection fails if the server's certificate does not match a CA trusted
by MySQL Router, or the server certificate's subject does not match the hostname or IP address
MySQL Router connected to.

• --config file_path, -c file_path

Command-Line Format --config file_path, -c file_path

Used to provide a path and file name for the configuration file to use. Use this option if you want to
use a configuration file located in a folder other than the default locations.

When used with --bootstrap, and if the configuration file already exists, a copy of the current file
is saved with a .bak extension if the generated configuration file contents is different than the original.
Existing .bak files are overwritten.

• --extra-config file_path, -a file_path

Command-Line Format --extra-config file_path, -a
file_path

Used to provide an optional, additional configuration file to use. Use this option if you want to split the
configuration file into two parts for testing, multiple instances of the application running on the same
machine, etc.

This configuration file is read after the main configuration file. If there are conflicts (an option is set in
multiple configuration files), values from the file that is loaded last is used.

• --install-service

Command-Line Format --install-service [service_name]

51

MySQL Router Command Line Programs

Platform Specific Windows

Install Router as a Windows service that automatically starts when Windows starts. The service
name defaults to MySQLRouter.

This installation process does not validate configuration files passed in via --config.

This option is only available on Windows.

• --install-service-manual

Command-Line Format --install-service-manual
[service_name]

Platform Specific Windows

Install MySQL Router as a Windows service that can be manually started. The service name defaults
to MySQLRouter.

This option is only available on Windows. Optional service name argument available as of MySQL
Router 8.0.28.

• --remove-service

Command-Line Format --remove-service [service_name]

Platform Specific Windows

Remove the Router Windows service; service name defaults to MySQLRouter.

This option is only available on Windows. Optional service name argument available as of MySQL
Router 8.0.28.

• --service

Command-Line Format --service

Platform Specific Windows

Start Router as a Windows service. This is a private option, meaning it is only meant to be used by
the Windows Service when launching Router as a service.

This option is only available on Windows. Optional service name argument available as of MySQL
Router 8.0.28.

• --update-credentials-section

Command-Line Format --update-credentials-section
section_name

Platform Specific Windows

This option is only available on Windows, and refers to its password vault.

• --conf-target-cluster

Command-Line Format --conf-target-cluster value

Introduced 8.0.27

Type String

Valid Values current

52

MySQL Router Command Line Programs

primary

Sets the target_cluster metadata MySQL Router option. Accepts one of the following strings:

• current: sets target_cluster to the cluster containing the node being bootstrapped against.
It defines it as the cluster's UUID value.

If this is also the Primary, it does not dynamically follow role changes like the primary does;
instead it remains static.

• primary: sets target_cluster to the primary cluster, including when it changes at runtime.

See also --config-target-cluster-by-name, which sets the target_cluster to a specific
static cluster name.

Note

Bootstrapping against a ClusterSet requires the cluster_type Router
configuration option set to gr.

• --conf-set-option

Command-Line Format --conf-set-option
section_name[:optional_section_key].option=value

Introduced 8.0.28

Type String

Sets a value for a generated configuration option during bootstrap; this can set a value for any
bootstrapped option, for example:

$> mysqlrouter -B 127.0.0.1:5000 \
 --directory=dir1 \
 --conf-set-option=logger.level=debug \
 --conf-set-option=routing:test_rw.max_connect_errors=0 \
 --conf-set-option=routing:test_ro.max_connect_errors=0

Those commands alter the default values for those specific options by defining them as such:

[logger]
level=debug

[routing:test_rw]
...
max_connect_errors=0
...

[routing:test_ro]
...
max_connect_errors=0
...

--conf-set-option definitions take precedence over option specific parameters to
set specific value. For example, if both --connect-timeout=X and --conf-set-
option=DEFAULT.connect_timeout=Y are specified when bootstrapping, the
connect_timeout is set to Y in the generated configuration file.

• --conf-target-cluster-by-name

Command-Line Format --conf-target-cluster-by-name
clusterName

Introduced 8.0.27
53

https://dev.mysql.com/doc/mysql-shell/8.0/en/innodb-clusterset.html

MySQL Router Command Line Programs

Type String

Sets the target_cluster metadata MySQL Router option to a specific cluster name.

Or, instead use --conf-target-cluster to assign a dynamic cluster type, such as primary.

• --remove-credentials-section section_name

Command-Line Format --remove-credentials-section
section_name

Platform Specific Windows

Remove the credentials for a given section.

This option is only available on Windows, and refers to its password vault.

• --clear-all-credentials

Command-Line Format --clear-all-credentials

Platform Specific Windows

Clear the password vault by removing all credentials stored in it.

This option is only available on Windows, and refers to its password vault.

• --disable-rest

Command-Line Format --disable-rest

Introduced 8.0.22

By default, configuration details for the MySQL Router REST API web service functionality are added
to the generated mysqlrouter.conf file at bootstrap; and this parameter means those details
are not added. This does not disable REST API functionality, as the REST API functionality can be
manually configured (to enable it) later on.

• --https-port

Command-Line Format --https-port value

Introduced 8.0.22

Type Integer

Default Value 8443

Minimum Value 1

Maximum Value 65535

Optionally define the HTTP server's port for the MySQL Router REST API under the [http_server]
section in generated mysqlrouter.conf at bootstrap. It defaults to 8443. Availability of the port is
not checked.

4.3.2.2 mysqlrouter_plugin_info — Command Line Options

The mysqlrouter_plugin_info utility is a debugging tool that inspects a MySQL Router plugin for
potential conflicts and general problems.

Usage information:

$> mysqlrouter_plugin_info --help

54

MySQL Router Command Line Programs

Usage: mysqlrouter_plugin_info <mysqlrouter_plugin_file> <plugin_name>

Examples

Print plugin information:

 mysqlrouter_plugin_info /usr/lib/mysqlrouter/routing.so routing

Options

 -V, --version
 Display version information and exit.
 -?, --help
 Display this help and exit.

$> mysqlrouter_plugin_info --version

MySQL Router Ver 8.0.37 for Linux on x86_64 (MySQL Community - GPL)

Example usage:

$> mysqlrouter_plugin_info /usr/lib64/mysqlrouter/routing.so routing
{
 "abi-version": "2.0",
 "arch-descriptor": "x86_64/Linux/GNU-14.0.1/*",
 "brief": "Routing MySQL connections between MySQL clients/connectors and servers",
 "plugin-version": "0.0.1",
 "requires": [
 "logger",
 "router_protobuf",
 "router_openssl",
 "io",
 "connection_pool",
 "destination_status"
],
 "conflicts": []
}

4.3.2.3 mysqlrouter_passwd — Command Line Options

The mysqlrouter_passwd utility is a command line application to manage the accounts in the
passwd file. For example usage, see Section 6.1, “A Simple MySQL Router REST API Guide”.

Note

This feature was added in MySQL Router 8.0.16.

Usage information:

Usage

 mysqlrouter_passwd [opts] <cmd> <filename> [<username>]
 mysqlrouter_passwd --help
 mysqlrouter_passwd --version

Commands

 delete
 Delete username (if it exists) from <filename>.
 list
 list one or all accounts of <filename>.
 set
 add or overwrite account of <username> in <filename>.
 verify
 verify if password matches <username>'s credentials in <filename>.

55

MySQL Router Command Line Programs

Options

 -?, --help
 Display this help and exit.
 --kdf <name>
 Key Derivation Function for 'set'. One of pbkdf2-sha256, pbkdf2-sha512,
 sha256-crypt, sha512-crypt. default: sha256-crypt
 -V, --version
 Display version information and exit.
 --work-factor <num>
 Work-factor hint for KDF if account is updated.

4.3.2.4 mysqlrouter_keyring — Command Line Options

The mysqlrouter_keyring utility is a command line application to manage MySQL Router key
rings.

Note

This feature was added in MySQL Router 8.0.18.

Usage information:

Generic commands

• --help: usage information.

• --version: the tool's version.

Keyring commands; all commands also accept --master-key-reader and --master-key-writer instead of
--master-key-file.

• init: Initialize keyring with a master-key-file.

Creates a keyring and master-key-file if they do not exist; and adds keyring to master-key-file if it
does not yet exist there.

• list: List usernames stored in the keyring; or list properties of a user stored in the keyring.

• get: Get property of user from the keyring.

• export: Export all entries of the keyring as JSON.

• set: Add or overwrite account of the user in the keyring file

• delete: Delete user from the keyring.

Master-key commands

• master-key-list: List keyring-ids from master-key-file.

• master-key-delete: Delete master-key from "keyring" from master-key-file.

• master-key-rename: Rename keyring-id in a master-key-file.

Examples:

$> mysqlrouter_keyring init --master-key-file=mysqlrouter.key data/keyring

$> mysqlrouter_keyring list --master-key-file=mysqlrouter.key data/keyring
$> mysqlrouter_keyring list --master-key-file=mysqlrouter.key data/keyring user

$> mysqlrouter_keyring get --master-key-file=mysqlrouter.key data/keyring someuser key

$> mysqlrouter_keyring export --master-key-file=mysqlrouter.key data/keyring

$> mysqlrouter_keyring set --master-key-file=mysqlrouter.key data/keyring user key value

56

Configuration File Options

$> mysqlrouter_keyring delete --master-key-file=mysqlrouter.key data/keyring user
$> mysqlrouter_keyring delete --master-key-file=mysqlrouter.key data/keyring user key

$> mysqlrouter_keyring master-key-list --master-key-file=mysqlrouter.key

$> mysqlrouter_keyring master-key-delete --master-key-file=mysqlrouter.key data/keyring

$> mysqlrouter_keyring master-key-rename --master-key-file=mysqlrouter.key data/keyring other/data/keyring

4.3.3 Configuration File Options

When started, MySQL Router reads a list of configuration files that together make up the configuration
of the router. At least one configuration file is required.

MySQL Router reads options from configuration files that closely resemble the traditional INI file format,
with sections and options. These specify the options set when MySQL Router starts. For file syntax
information, see Section 4.1, “Configuration File Syntax”.

Options are defined under sections, that dictate the option's meaning. For example, user under the
[DEFAULT] section refers to the system user running router, while user under the [metadata_cache]
section refers to the MySQL user that accesses metadata.

The following tables are separated by section, and summarize the MySQL Router options defined
in a MySQL Router configuration file. Detailed information about each of these options, such as
descriptions and allowed values, is documented below these tables.

• General Options

• Routing Options

• Destination Status Options

• Metadata Cache Options

• Logging Options

• HTTP Server Options

• MySQL Router Configuration File Option Descriptions

General Options

Table 4.7 [DEFAULT]

Option Name Description Type

config_folder Path to configuration files String

connect_timeout Number of seconds before
connection attempts to a
metadata server are considered
timed out

Integer

event_source_name Microsoft Windows platforms
only. Defines the service name
used by MySQL Router when it
is run as a service on Microsoft
Windows.

String

keyring_path Path to keyring file String

logging_folder Path to router logs String

master_key_path Path to master keyring file String

master_key_reader Script that returns the master key
to STDOUT

String

57

Configuration File Options

Option Name Description Type

master_key_writer Script that reads the master key
from STDIN

String

max_total_connections Total maximum number of
allowed client connections from
the router

Integer

pid_file Location to store the PID file String

plugin_folder Path to router plugins String

runtime_folder Path to runtime files String

sinks Logging method(s) to receive
configured log data

String

thread_stack_size Size in KB of memory allocated
to each thread stack

Integer

unknown_config_option Error type sent if an unknown
configuration option is
encountered

String

user System user MySQL Router is
run as

String

Routing Options

Table 4.8 [routing]

Option Name Description Type

bind_address Address router is bound to, also
uses bind_port if a port is not
defined

String

bind_port Default port used by
bind_address

Integer

client_connect_timeout Maximum number of seconds
to receive packets from MySQL
server

Integer

client_ssl_cert The path to the SSL certificate
(PEM) used to encrypt client-to-
router communications

String

client_ssl_cipher Which ciphers are allowed
between client and MySQL
Router, defaults to a secure list
of SSL ciphers

String

client_ssl_curves Which curves are allowed
between the client and MySQL
Router, defaults to a secure list
of SSL curves

String

client_ssl_dh_params Filename of the DH parameter
file. Not set by default

String

client_ssl_key The path to the SSL private
key certificate file (PEM) used
to encrypt client-to-router
communications

String

client_ssl_mode Controls if connections from
the client to MySQL Router

String

58

Configuration File Options

Option Name Description Type
must be encrypted, defaults to
PREFERRED if not set

connect_timeout Number of seconds before
connection attempts to a MySQL
server are considered timed out

Integer

connection_sharing Whether to enable connection
sharing.

Integer

connection_sharing_delay Seconds to wait before moving
an idle connection to the
connection pool.

Integer

destinations Routing destinations as either a
comma-separated list of MySQL
servers, or a metadata-cache
definition

String

dynamic_state Path to generated JSON
file used to track and store
active MySQL InnoDB Cluster
Metadata server addresses

String

max_connect_errors Maximum number of failed
MySQL server connections
before giving up

Integer

max_connections Maximum number of connections
assigned to a routed destination
MySQL server

Integer

mode Routing mode, how router
chooses destination MySQL
servers

String

net_buffer_length Set net_buffer_length Integer

protocol Protocol for connecting to
MySQL Server

String

read_timeout Number of seconds before read
operations to a metadata server
are considered timed out

Integer

routing_strategy Routing strategy (optional),
how router chooses destination
MySQL servers

String

server_ssl_ca The path to the Certificate
Authority (CA) certificate file in
PEM format

String

server_ssl_capath The path to the directory that
contains the trusted SSL
Certificate Authority (CA)
certificate files in PEM format.

String

server_ssl_cipher SSL Cipher for Server String

server_ssl_crl The path to the file containing the
certificate revocation lists in PEM
format

String

server_ssl_crlpath The path to the directory
that contains the certificate
revocation list files in PEM format

String

59

Configuration File Options

Option Name Description Type

server_ssl_curves SSL Curves for Server String

server_ssl_mode Controls if connections from
router to server must be
encrypted

String

server_ssl_verify Verification of the SSL
certificates presented to the
router by the server

String

socket Path to Unix domain socket file String

unreachable_destination_refresh_intervalHow often, in seconds,
unreachable destination
candidates are probed for
availability.

Integer

Destination Status Options

Table 4.9 [destination_status]

Option Name Description Type

error_quarantine_interval Defines the interval, in seconds,
between checks on quarantined
destination connectivity. If a
connection is possible, the
destination is moved out of
quarantine and made available
for connections.

Integer

error_quarantine_thresholdDefines the threshold of
consecutive, failed attempts to
connect to a routing destination
before MySQL Router adds
the destination to quarantine
and stops using it as a
destination until it is cleared
by the quarantine mechanism.
For example, if set to 5, the
destination is quarantined after
5 consecutive, failed attempts to
connect to it.

Integer

Table 4.10 [connection_pool]

Option Name Description Type

idle_timeout Seconds to keep the idling
connection in the collection pool
before closing it

Integer

max_idle_server_connectionsConnections to keep open after
the client disconnects

Integer

Metadata Cache Options

Table 4.11 [metadata_cache]

Option Name Description Type

auth_cache_refresh_intervalTime between auth-cache
refresh attempts

Numeric

60

Configuration File Options

Option Name Description Type

auth_cache_ttl Time until the cache becomes
invalid if not refreshed

Numeric

bootstrap_server_addressesMySQL servers with metadata,
as a comma-separated list

String

cluster_type Object Router was bootstrapped
against

String

metadata_cluster InnoDB Cluster name String

router_id Router ID Integer

ssl_ca SSL CA file to verify server's
certificate against

String

ssl_capath Directory containing SSL CA
files to verify server's certificate
against

String

ssl_crl SSL CRL file to verify server's
certificate against

String

ssl_crlpath Directory containing SSL CRL
files to verify server's certificate
against

String

ssl_mode SSL connection mode for
connecting to the metadata
server, defaults to PREFERRED
if not set

String

tls_version Comma-separated list of TLS
versions to request, if SSL is
enabled

String

ttl Time To Live, in seconds Integer

use_gr_notifications Group Replication notifications
behavior

Integer

user MySQL user that accesses
the MySQL Server's metadata
schema

String

Logging Options

Table 4.12 [logger]

Option Name Description Type

destination Name of device to log to;
optionally used with [consolelog]

String

filename Log file name; optionally used
with [logger] and [filelog]

String

level Logging level String

timestamp_precision Logger timestamp precision String

HTTP Server Options

Table 4.13 [http_server]

Option Name Description Type

bind_address IP address bound to the HTTP
port

String

61

Configuration File Options

Option Name Description Type

port HTTP server TCP port Integer

require_realm [http_auth_realm] name String

ssl_cert SSL certification file name String

ssl_cipher Approved SSL ciphers String

ssl_dh_param DH parameter file name String

ssl Enables TLSv1.2 or later support Integer

ssl_key SSL key filename String

static_folder Directory for HTTP server static
file requests

String

Table 4.14 [http_auth_realm]

Option Name Description Type

backend Name of the [http_auth_backend]
section

String

method The HTTP authentication method String

name Realm name for authenticated
user

String

require Require authentication validation String

Table 4.15 [http_auth_backend]

Option Name Description Type

backend Backend type String

filename Backend storage file name String

Table 4.16 [io]

Option Name Description Type

backend The IO backend String

threads The IO thread count Integer

Table 4.17 [keepalive]

Option Name Description Type

interval The keepalive ping frequency
interval, in seconds

Integer

runs Limits the number of keepalive
executions (runs), or 0 for no
limit

Integer

MySQL Router Configuration File Option Descriptions

• event_source_name

Type String

Default Value

Microsoft Windows platforms only. Defines the service name used by MySQL Router when it is run
as a service on Microsoft Windows. This enables you to differentiate between services when running
multiple instances of MySQL Router and between their messages in the Event Log.

For example:

62

Configuration File Options

[DEFAULT]
event_source_name = MySQLRouterService

• logging_folder

Type String

Default Value $router_basepath

Path to the MySQL Router log file directory. The log file is named mysqlrouter.log, and it is
either generated or appended to if this file already exists.

Setting logging_folder to an empty value sends the messages to the console (stdout).

Note

The default logging_folder value changed from "" to Router's base path
in MySQL Router 2.1.

An example that sends logs to /var/log/mysqlrouter/mysqlrouter.log:

[DEFAULT]
logging_folder = /var/log/mysqlrouter

When the --directory bootstrap option is used, the generated configuration file sets it to
$directory/log/.

• plugin_folder

Type String

Default Value (Windows)

Default Value (Other) /usr/local/lib/mysqlrouter

Path to the MySQL Router plugins. This folder must match the MySQL Router installation directory.
You should only set this if you have a custom installation where the plugins are not in the standard
installation location.

Default value: /usr/local/lib/mysqlrouter

• runtime_folder

Type String

Default Value (Windows)

Default Value (Other) /run/mysqlrouter

Path to the MySQL Router runtime files.

Default value: /run/mysqlrouter

• master-key-writer

Command-Line Format --master-key-writer file_path

Introduced 8.0.12

Type String

Script that reads the master key from STDIN. Set using the --master-key-writer command-line
bootstrap option.

• master-key-reader

63

Configuration File Options

Command-Line Format --master-key-reader file_path

Introduced 8.0.12

Type String

Script that returns the master key to STDOUT. Set using the --master-key-reader command-
line bootstrap option.

• config_folder

Type String

Default Value (Windows)

Default Value (Other) /usr/local/etc/mysqlrouter

Path to the MySQL Router configuration files.

Note

The config_folder is currently set at compile time. The option could be
used by future plugins when they have their own configuration files.

Default value: /usr/local/etc/mysqlrouter

• sinks

Introduced 8.0.16

Type String

Valid Values (Windows) consolelog

filelog

eventlog

Valid Values (Other) consolelog

filelog

syslog

The sink(s) (different logging methods) that a defined log level are sent to.

Supported sink values are: consolelog, filelog, eventlog (on Windows), and syslog (on
Unix-based systems). Use a comma-separated list to define multiple values.

Default value: filelog if the logging_folder option is not empty in the "[DEFAULT]" section,
otherwise consolelog.

For example, to configure logger to use the file, console and the event log each using the debug log
level configured in the [logger] section:

[logger]
level=debug
sinks=consolelog,eventlog,filelog

• keyring_path

Type String

Default Value (Windows) %PROGRAMDATA%\MySQL\MySQL Router
\keyring-data

64

Configuration File Options

Default Value (Other) /run/mysql-router/keyring-data

Points to the keyring file's location.

A system-wide bootstrap does not add this option to the generated configuration file, and assumes
the keyring file is located in the system-wide runtime state directory. If --directory is also used,
then the keyring file is stored under the runtime state directory of that instance, under run/ in the
specified directory.

System-wide default paths are used if this option is not defined.

Example usage:

keyring_path = /opt/myrouter/data/keyring
master_key_path = /opt/myrouter/mysqlrouter.key

• master_key_path

Type String

Default Value (Windows) %PROGRAMDATA%\MySQL\MySQL Router
\mysqlrouter.key

Default Value (Other) /run/mysql-router/mysqlrouter.key

The master key file's location. This option allows unattended decryption, as otherwise its location is
requested at startup.

System-wide default paths are used if this option is not specified.

Example usage:

keyring_path = /opt/myrouter/data/keyring
master_key_path = /opt/myrouter/mysqlrouter.key

• unknown_config_option

Introduced 8.0.29

Type String

Default Value warning

Valid Values warning

error

Determines MySQL Router behavior for handling unknown configuration options, such as typos.

A warning is default behavior, and bootstrapping defines it as error in the generated configuration
file. MySQL Router versions before 8.0.29 ignore unknown configuration options. A warning logs a
warning message but does not halt, whereas an error means Router fails to initialize and exits.

[DEFAULT]
unknown_config_option=warning

65

Configuration File Options

• user (system)

Type String

Run mysqlrouter as the user having the name user_name or the numeric user ID user_id.
“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.
This can also be assigned at runtime using the --user command line option.

On Linux, installing Router with official DEB or RPM packages creates a local system user and group
named "mysqlrouter" on the host, and MySQL Router runs as this user by default. This account does
not have shell access and its home directory points to the directory where the default configuration
file is stored.

The purpose of this option is to run MySQL Router as a user with restricted system privileges. If the
user does not exist on the system, or if an attempt to start Router as root is made, an error is emitted
and Router exits.

MySQL Router can be bootstrapped and executed under any Operating System user and does
not require special privileges other than read and write access to its own files. The files it accesses
include plugins (read/execute), configuration file, logs, UNIX domain socket files (if enabled), and
more.

By default, the configuration and log files are written to a system-wide location such as /etc and /
var/log. Alternatively, Router can be bootstrapped to a self-contained directory of its own by using
the --directory option. For example:

$> sudo mysqlrouter --bootstrap localhost:3310 --directory /a/path/myrouter --user snoopy

In this example, Router creates /a/path/myrouter and adds all of the generated files and
directories here, and these are only writable by the system user snoopy. Additionally, user is
defined in the generated configuration file /a/path/myrouter/mysqlrouter.conf:

[DEFAULT]
user=snoopy

Note

This is different from the user definition defined in the [metadata_cache]
section, which is a MySQL user.

• ssl_ca

Type String

Path to the SSL CA file to verify server's certificate against when connecting to the metadata servers.

Can optionally be set with the --ssl-ca bootstrap option.

• ssl_capath

Type String

Path to directory containing SSL CA files to verify server's certificate against when connecting to the
metadata servers.

Can optionally be set with the --ssl-capath bootstrap option.

66

Configuration File Options

• ssl_crl

Type String

Path to SSL CRL file to use when connecting to metadata servers and verifying their SSL certificate.

Can optionally be set with the --ssl-crl bootstrap option.

• ssl_crlpath

Type String

Path to directory containing SSL CRL files to use when connecting to metadata servers and verifying
their SSL certificate.

Can optionally be set with the --ssl-crlpath bootstrap option.

• tls_version

Type String

Comma-separated list of TLS versions to request, such as 'TLSv1.2,TLSv1.3', if SSL is enabled.

Can optionally be set with the --tls-version bootstrap option.

• bind_address

Type String

Default Value 127.0.0.1

Information related to the optional bind_address option:

• Routing entries can be bound to a network interface (NIC). The default bind_address is
127.0.0.1. If a port is not defined here, then setting bind_port is required.

• By default, --bootstrap sets bind_address=0.0.0.0 for each route in the generated Router
configuration file. This value can be changed using --conf-bind-address.

• Binding to a specific IPv4 or IPv6 address allows and ensures that MySQL Router is not starting
and routing the service on an NIC on which nothing is allowed to execute.

• It is not possible to specify more than one binding address per routing configuration group.
However, using 0.0.0.0:$port (where you define $port) binds all network interfaces (IPs) on the
host. IPv6 addresses can also be used.

Example usage:

bind_address = 127.0.0.1:7001

Note

The bind_address cannot be listed in the destinations list.

67

Configuration File Options

• bind_port

Type Integer

Optionally, you can define a default port for bind_address using bind_port. If a port is not
configured in bind_address, then bind_port is required and used.

Optionally set these values by using the --conf-base-port bootstrap option.

The three examples below all result in bind_address = 127.0.0.1:7001

[routing:example_1]
bind_port = 7001

[routing:example_2]
bind_port = 7001
bind_address = 127.0.0.1

[routing:example_3]
bind_address = 127.0.0.1:7001

• socket

Platform Specific Linux

Type String

Sockets are enabled using the socket option, which can be specified with or without the TCP
bind_port and bind_address options. An example:

[routing]
socket = /tmp/mysqlrouter.sock
destinations = a.example.com:3306,b.example.com:3307

When launching MySQL Router, Router will refuse to run if either the socket file already exists or it
cannot be written to.

Relative paths are acceptable and based on the current working directory where Router is launched.

Router can listen to both TCP sockets and Unix sockets simultaneously. For example, the following
[routing] configuration example is valid and configures Router to listen for connections on both
localhost:1234 and /tmp/mysqlrouter.sock:

[routing:my_redirect]
bind_address = localhost:1234
socket = /tmp/mysqlrouter.sock
mode = read-write
destinations = localhost:57121, localhost:57122, localhost:57123

Note

A Unix domain socket length limit is platform-specific and should not exceed
the system's allowed length.

• protocol

Type String

Default Value classic

Valid Values classic

68

Configuration File Options

x

Used by the routing plugin when connecting to the destination MySQL server, and can be set to
either "classic" (default), or "x" (X Protocol).

Example usage:

[routing:basic_failover]
bind_port = 7001
mode = read-write
destinations = 10.20.200.1:33060, 10.20.200.2:33060
protocol = x

The protocol option also affects the default port used by each destination. If a destination port is
not configured, then the default port is 3306 for "classic" (default), 33060 for "x" (X Protocol).

• pid_file

Introduced 8.0.20

Type String

Sets location of the PID file. This can be set in three different ways (in order of precedence): the
--pid-file command-line option, setting this pid_file option in Router's configuration file, or
defining the ROUTER_PID environment variable.

If --bootstrap is specified, then the pid_file and ROUTER_PID definitions are ignored. This is
unlike the --pid-file command-line option which causes Router to fail.

If --bootstrap is not specified, then the following cause Router to fail: the --pid-file already exists,
pid_file or ROUTER_PID are set but empty, or if Router can't write the PID file.

• connect_timeout

Type Integer

Default Value (≥ 8.0.29) 5

Default Value (≤ 8.0.28) 1

Minimum Value 1

Maximum Value 65536

Timeout value used by the MySQL Router when connecting to the destination MySQL server. The
value cannot be unlimited, and an invalid value results in a configuration error. The valid range is
between 1 and 65536. You should keep this value low.

For example, when using read-write mode, the value can be a little higher to wait for the
PRIMARY to become available. When using read-only mode for secondary connections, a lower
value makes more sense because Router selects a new server during connection routing.

Example usage:

[routing]
connect_timeout = 5

Can be set at bootstrap using --conf-set-option=routing.connect_timeout.

• connect_timeout

Type Integer

Default Value (≥ 8.0.29) 5 69

Configuration File Options

Default Value (≥ 8.0.14, ≤ 8.0.28) 15

Default Value (≤ 8.0.13) 30

Timeout value used by the MySQL Router when connecting to the MySQL metadata server.

Example usage:

[DEFAULT]
connect_timeout = 5

Can be set at bootstrap using either --connect-timeout or --conf-set-
option=DEFAULT.connect_timeout.

• read_timeout

Type Integer

Default Value 30

Timeout value used by the MySQL Router when reading from the MySQL metadata server. The
default value is 30 seconds.

Example usage:

[DEFAULT]
read_timeout = 30

• destinations

Type String

Provides host information for establishing connections. It accepts either a comma-separated list of
destination addresses or a metadata-cache link to an InnoDB cluster.

Example usage with specific hosts (static routing):

destinations = a.example.com,b.example.com,c.example.com

Note

If a destination's port is not explicitly set, then the default port is 3306 if
protocol is set to "classic" or not set (default), or port 33060 if protocol is
set to "x".

Example usage with InnoDB cluster metadata cache:

destinations=metadata-cache://mycluster/default?role=PRIMARY

The metadata-cache URI options are:

• role: Determines the type of instances available to the connection. Acceptable values are
PRIMARY, SECONDARY, or PRIMARY_AND_SECONDARY.

The routing_strategy mysqlrouter.conf option defines the specific strategy, and the
default metadata-cache routing strategy is round-robin.

• disconnect_on_promoted_to_primary: Controls whether existing client connections to a
secondary are closed when the secondary is promoted as a primary. The default value is "no",

70

Configuration File Options

meaning existing client connections to the promoted secondary are not closed after promotion. Set
disconnect_on_promoted_to_primary=yes in the URI to close these existing connections.

This option was added in MySQL Router 8.0.12.

• disconnect_on_metadata_unavailable: Controls whether existing client
connections are closed when the group is overloaded. The default value is "no",
meaning existing client connections are not closed when the group is overloaded. Set
disconnect_on_metadata_unavailable=yes in the URI to close these existing connections.

This option was added in MySQL Router 8.0.12.

Note

Related, these conditions cause disconnections: connections to a primary
after the primary is downgraded to a secondary, and connections to a node
that are no longer part of the cluster.

• dynamic_state

Introduced 8.0.14

Type String

This option tracks and stores active MySQL InnoDB Cluster Metadata server addresses and loads
them if Router is restarted. This functionality is activated by --bootstrap and is preferred over the
deprecated static bootstrap_server_addresses option.

Bootstrapping defines the dynamic_state option in mysqlrouter.conf file under the
[DEFAULT] section. The value is a path to a JSON file named state.json, which is created when
Router has been bootstrapped. The state.json is initialized with InnoDB Cluster Metadata server
addresses and the Group Replication ID (the group_replication_name returned by the InnoDB
Cluster); additional information is added and updated while Router is running.

Example mysqlrouter.conf entry:

[DEFAULT]
dynamic_state=/opt/myrouter/data/state.json

Example state.json generated by --bootstrap:

{
 "metadata-cache": {
 "group-replication-id": "4b9e817a-0254-11e9-9cc0-080027bb5030",
 "cluster-metadata-servers": [
 "mysql://localhost:3310",
 "mysql://localhost:3320",
 "mysql://localhost:3330"
]
 },
 "version": "1.0.0"
}

The dynamic_state and deprecated bootstrap_server_addresses options cannot be set at
the same time. For backwards compatibility, if only bootstrap_server_addresses is set then
it functions as it did in previous Router versions and this dynamic configuration functionality is not
used.

This option was added in MySQL Router 8.0.14.

• mode

Type String 71

Configuration File Options

Valid Values read-write

read-only

The deprecated mode option sets Router's scheduling, and the two supported mode values are:

Important

MySQL Router 8.0.4 introduced the routing_strategy option as a more
flexible way to configure the mode schedule.

Both mode and routing_strategy cannot be set at the same time. Setting
one is required for static routing while they are optional with InnoDB cluster.

• read-write: Typically used for routing to a master or primary MySQL instance.

Mode Schedule: In read-write mode, all traffic is directed to the initial address on the list. If that
fails, then MySQL Router will try the next entry on the list continues trying each MySQL server on
the list. If no more MySQL servers are available on the list then routing is aborted.

Note

With routing_strategy, this same behavior can be defined using
routing_strategy=next-available instead of mode=read-write.

The first successful MySQL server contacted is saved in memory as the first to try for future
incoming connections. This is a temporary state, meaning this is forgotten after MySQL Router is
restarted.

[routing:example_strategy_mode]
bind_port = 7001
destinations = primary1.example.com,primary2.example.com,primary3.example.com
mode = read-write

Because mode is deprecated, the previous example should use routing_strategy instead:

[routing:example_strategy]
bind_port = 7001
destinations = primary1.example.com,primary2.example.com,primary3.example.com
routing_strategy = next-available

• read-only: Typically used for routing to a replica or secondary MySQL instance.

Mode Schedule: Mode read-only uses a simple round-robin method to go through the list of
MySQL Servers. It sends the first connection to the first address on the list, the next connection to
the second address, and so on, and circles back to the first address after the list is exhausted.

Note

With routing_strategy, this same behavior can be defined using
routing_strategy=round-robin instead of mode=read-only.

If a MySQL server is not available then the next server is tried. When none of the MySQL servers
on the list are available then the routing is aborted.

Unavailable MySQL servers are quarantined. Their availability is rechecked and when available
they are put back onto the available destinations list. The destinations order is maintained.

[routing:ro_route_mode]
bind_port = 7002
destinations = secondary1.example.com,secondary2.example.com,secondary3.example.com

72

Configuration File Options

mode = read-only

Because mode is deprecated, the previous example should use routing_strategy instead:

[routing:ro_route]
bind_port = 7002
destinations = secondary1.example.com,secondary2.example.com,secondary3.example.com
routing_strategy=round-robin

Alternatively, the previous destinations example could use metadata-cache to utilize InnoDB
cluster's metadata cache that dynamically configures host information. For example: .

[routing:ro_route]
bind_port = 7002
destinations=metadata-cache://myCluster/default?role=SECONDARY
routing_strategy=round-robin

• routing_strategy

Type String

Valid Values first-available

next-available

round-robin

73

Configuration File Options

round-robin-with-fallback

The routing strategy defines how MySQL Router chooses MySQL servers to connect to.

Important

MySQL Router 8.0.4 introduced the routing_strategy option as a more
flexible way to define the strategy. Previously this behavior was defined using
the now deprecated mode option.

Both routing_strategy and mode cannot be set at the same time. Setting
one is required for static routing while they are optional with InnoDB cluster.

Available strategies:

Note

The role documentation following this section describes the available role
and routing_strategy combinations and conflicts.

Unreachable destinations are quarantined and skipped, and are probed for availability every
error_quarantine_interval seconds. All routing strategies except for next-available
utilize this behavior. This functionality was added in v8.0.29.

• round-robin: for load-balancing, each new connection is made to the next available server in a
round-robin fashion.

• round-robin-with-fallback: for load-balancing, each new connection is made to the next
available secondary server in a round-robin fashion. If a secondary server is not available then
servers from the primary list are used in round-robin fashion.

• first-available: the new connection is routed to the first available server from the
destinations list. In case of failure, the next available server is used. This cycle continues until all
servers are unavailable.

• next-available: like first-available, in that the new connection is routed to the first
available server from the destinations list. Unlike first-available, if a server is marked as
unreachable then it gets discarded and is never used again as a destination.

This strategy is backward compatible with MySQL Router 2.x's mode's read-write behavior. Its
limitations include:

• After all nodes of the selection are discarded, there is no way to add servers back to the list.

Unlike other strategies, unreachable destinations are not probed for availability every
error_quarantine_interval seconds.

• After restarting MySQL Router, all knowledge of what servers are discarded is lost and all
servers are available again.

• Metadata cache does not support the next-available routing policy, as next-available only
functions with static routing.

The role defaults and available combinations:

• PRIMARY: round-robin is default behavior (if routing_strategy is not set), whereas bootstrapping
adds routing_strategy=first-available to the generated MySQL Router configuration
file. The available strategy values are first-available and round-robin.

74

Configuration File Options

Note

The bootstrap value changed from round-robin to first-available in v8.0.16.

• SECONDARY: round-robin is default behavior (if routing_strategy is not set), whereas
bootstrapping adds routing_strategy=round-robin-with-fallback to the generated
MySQL Router configuration file. The available strategy values are first-available, round-robin and
round-robin-with-fallback.

Note

The bootstrap value changed from round-robin to round-robin-with-fallback
in v8.0.16.

• PRIMARY_AND_SECONDARY: round-robin is default behavior (if routing_strategy is not set). The
available strategy values are first-available, round-robin.

• unreachable_destination_refresh_interval

Introduced 8.0.29

Deprecated 8.0.32

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

The quarantine mechanism tracks unreachable destinations and later probes them for availability
in case they come back online. This option determines how often (in seconds) each unreachable
destination candidate is probed for availability before it can be added back to the rotation.

[DEFAULT]
unreachable_destination_refresh_interval = 1

All routing strategies except for next-available utilize this behavior.

• max_connections

Type Integer

Default Value 512

Minimum Value 1

Maximum Value 65536

Each routing can limit the number of routes or connections. One possible use is to help prevent
possible Denial-Of-Service (DOS) attacks. The default value is 512, and the valid range is between 1
and 65536.

This is similar to MySQL Server's max_connections server system variable.

[routing:mycluster_default_rw]
max_connections = 512

Alternatively, use the newer max_total_connections configuration option that sets one value for
all Router sections combined.

MySQL Router 8.0.22 introduced functionality that increases the concurrent connection limit
from around 5,000 to 50,000 connections. The maximum depends both on the system's poll (or

75

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections

Configuration File Options

linux_epoll) limitations and the number of available CPU cores/threads. See also the [IO] backend
and threads configuration options.

Optionally setting max_connections in the [DEFAULT] section sets the default value for each
routing destination.

• max_total_connections

Introduced 8.0.27

Type Integer

Default Value 512

Minimum Value 1

Maximum Value 9223372036854775807

The maximum number of client connections handled by Router, to help prevent running out of the file
descriptors.

This is similar to MySQL Server's max_connections server system variable.

[DEFAULT]
max_total_connections = 512

Note

The legacy max_connections option sets a value per routing instance,
such as one value for read-only, and another for write-only. The
max_total_connections option sets one value for all routing instances
combined.

The default value is 512, and it's set under the [DEFAULT] section. This option was added in
MySQL Router 8.0.27.

• thread_stack_size

Introduced 8.0.12

Type Integer

Default Value 64

Minimum Value 1

Maximum Value 65535

The stack size allocated for each thread. It is measured in kilobytes, and defaults to 64.

[DEFAULT]
thread_stack_size=128

• net_buffer_length

Introduced 8.0.22

Type Integer

Sets the net_buffer_length MySQL server option.

• max_connect_errors

Type Integer

Default Value 100
76

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_net_buffer_length

Configuration File Options

Minimum Value 1

Maximum Value 4294967295

The default value is 100, and the valid range is between 1 and 2^32 (4294967295, an unsigned int).

This is similar to MySQL Server's max_connect_errors server system variable.

This can cause a slight performance penalty if an application performs frequent reconnections,
because MySQL Router attempts to discover if connection-related errors are present.

A successful connection resets the error counter (as of 8.0.14).

Each routing has its own list of blocked hosts. Blocked clients receive the MySQL Server error
1129 code with a slightly different error message: "1129: Too many connection errors from
fail.example.com". The Router logs contain extra information for blocked clients, such as: INFO
[...] 1 authentication errors for fail.example.com (max 100) WARNING [...] blocking client host
fail.example.com

max_connect_errors = 100

• client_connect_timeout

Type Integer

Default Value 9

Minimum Value 2

Maximum Value 31536000

This is similar to MySQL Server's connect_timeout server system variable.

The default value is 9, which is one less than the MySQL 5.7 default. The valid range is between 2
and 31536000.

client_connect_timeout = 9

• auth_cache_refresh_interval

Introduced 8.0.20

Type Numeric

Default Value 2

Minimum Value 0.001

Maximum Value 3600

Time (in seconds) between the auth-cache refresh attempts. Defaults to 2. The value must be
smaller than auth_cache_ttl and larger than ttl else Router won't start.

This option is applied if the http_auth_backend section's backend option is set to metadata_cache;
which is a Router REST API feature.

• auth_cache_ttl

Introduced 8.0.20

Type Numeric

Default Value -1

Minimum Value 0.001
77

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_connect_timeout

Configuration File Options

Maximum Value 3600

Time (in seconds) until the cache becomes invalid if not refreshed. Defaults to -1 (infinite). The value
must be larger than auth_cache_refresh_interval and ttl else Router won't start.

This option is applied if the http_auth_backend section's backend option is set to metadata_cache;
which is a Router REST API feature.

• router_id

Type Integer

Maximum Value (≥ 8.0.38) 4294967295

Maximum Value (≤ 8.0.37) 999999

The MySQL Router ID.

• server_ssl_curves

Introduced 8.0.23

Type String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

• server_ssl_cipher

Introduced 8.0.23

Type String

Defaults to a secure list of SSL ciphers. Format this string as a colon separated list of cipher names.

• server_ssl_verify

Introduced 8.0.23

Type String

Default Value DISABLED

Valid Values DISABLED

VERIFY_CA

VERIFY_IDENTITY

Verification of the SSL certificates presented to the router by the server.

• DISABLED: the connection fails if the server does not provide a certificate in the handshake.

• VERIFY_CA: the connection fails if the server's certificate does not match a CA trusted by MySQL
Router.

• VERIFY_IDENTITY: the connection fails if the server's certificate does not match a CA trusted
by MySQL Router, or the server certificate's subject does not match the hostname or IP address
MySQL Router connected to.

• server_ssl_mode

Introduced 8.0.23

Type String

78

Configuration File Options

Default Value AS_CLIENT

Valid Values AS_CLIENT

DISABLED

PREFERRED

REQUIRED

SSL connection mode to use when connecting between MySQL Router and server. See also
Section 4.4, “TLS Configuration” .

• server_ssl_ca

Command-Line Format --server-ssl-ca file_path

Introduced 8.0.23

Type String

Default Value

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list
of trusted SSL Certificate Authorities. See also Section 4.4, “TLS Configuration” .

• server_ssl_capath

Command-Line Format --server-ssl-capath dir_path

Introduced 8.0.23

Type String

Default Value

The path name of the directory that contains trusted SSL Certificate Authority (CA) certificate files in
PEM format. See also Section 4.4, “TLS Configuration” .

• client_ssl_cert

Command-Line Format --client-ssl-cert file_path

Introduced 8.0.23

Type String

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-
side authentication during the bootstrap process.

Like -client_ssl_key, this option is only used during bootstrap that uses a root account. It is
useful when the root account was created with REQUIRE X509, and therefore logging in as root
requires the client to authenticate itself.

• server_ssl_crlpath

Command-Line Format --server-ssl-crlpath dir_path

Introduced 8.0.23

Type String

79

Configuration File Options

Default Value

The path of the directory that contains certificate revocation-list files in PEM format. See also
Section 4.4, “TLS Configuration” .

• server_ssl_crl

Command-Line Format --server-ssl-crl file_path

Introduced 8.0.23

Type String

Default Value

The path name of the file containing certificate revocation lists in PEM format. See also Section 4.4,
“TLS Configuration” .

• client_ssl_key

Command-Line Format --client-ssl-key file_path

Introduced 8.0.23

Type String

Default Value

The path name of the SSL private key file in PEM format used to encrypt client-to-router connections.
See also Section 4.4, “TLS Configuration” .

• client_ssl_dh_params

Introduced 8.0.23

Type String

Filename of the DH parameter file. If specified and not empty, the DH parameters from this file are
used instead of internal default DH parameters. Format the DH param file in PEM format.

• client_ssl_curves

Introduced 8.0.23

Type String

Which curves are allowed between the client and MySQL Router, defaults to a secure list of SSL
curves. Format this string as a colon separated list of curve names.

• client_ssl_cipher

Introduced 8.0.23

Type String

Which ciphers are allowed between client and MySQL Router, defaults to a secure list of SSL
ciphers. Format this string as a colon separated list of cipher names.

• client_ssl_mode

Introduced 8.0.23

Type String

Default Value PREFERRED

Valid Values PREFERRED

80

Configuration File Options

DISABLED

PASSTHROUGH

REQUIRED

Controls if connections from the client to MySQL Router must be encrypted. See also Section 4.4,
“TLS Configuration” .

• ssl_mode

Type String

Default Value PREFERRED

Valid Values PREFERRED

DISABLED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

SSL mode for connecting to the MySQL metadata server. It defaults to PREFERRED if not set.

When set to PREFERRED (the default), bootstrapping will warn when SSL is not used and
connection to the metadata server is unencrypted.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
As with the mysql client, this value is case-insensitive.

There is also a runtime option for bootstrapping; see --ssl-mode.

• bootstrap_server_addresses

Deprecated 8.0.14

Type String

Points to a list of MySQL servers with metadata that can be connected to. After the metadata
has been accessed, the metadata cache switches to the servers that are present in the primary
ReplicaSet to fetch the metadata. They are also known as bootstrap servers.

This option is deprecated in MySQL Router 8.0.14 and no longer generated by the bootstrap
process. Instead, the dynamic_state option was added as a replacement.

• user (MySQL)

Type String

A generated MySQL user with privileges to access the MySQL server's metadata schema. This
user's password is auto-generated and stored in an encrypted keyring. By default, the encryption
key for this keyring is stored in a read protected master key store file, which is defined in the
configuration file. Most commonly, this user and associated password are automatically generated
during bootstrap. Related command line options are --force-password-validation and --

81

Configuration File Options

password-retries. By default, the generated password passes the STRONG validate_password
strength.

The password is entirely managed by Router and never exposed, and is stored in a local keyring
system using the operating system's account that MySQL Router is running as. It can then be used
by Router to connect to InnoDB Cluster and retrieve current topology information. Sessions between
Router and metadata server are encrypted with SSL by default.

Where the generated keyring files are stored depends on how bootstrap is configured. For
self-contained installations (when --directory is used), it is stored under run/ in the self-
contained directory. For system-wide installations, it is stored in the system-wide runtime state
directory, and that path is platform specific. For additional information, see master_key_path and
keyring_path

This user is assigned (and requires) the following privileges:

Privileges needed by the Router account:

 On Metadata Server:

 SELECT ON mysql_innodb_cluster_metadata.*

 On Target Replica Sets:

 SELECT ON performance_schema.replication_group_members
 SELECT ON performance_schema.replication_group_member_stats

The generated username follows this pattern: mysql_router_{router_id}_[0-9a-z]{7}, where
{router_id} is the numeric router id and [0-9a-z]{7} is 7 random lowercase alphanumeric characters.
The router id is reused if already present in mysqlrouter.conf and its value can not exceed
4294967295 (2^32-1).

Note

This user is different from the user definition defined in the [DEFAULT]
section, which is a system user.

This structure changed in MySQL Router 8.0.38, previously it was
mysql_router_[0-9]{1,6}_[0-9a-z]{12}.

• metadata_cluster

Type String

Name of the InnoDB Cluster.

Note

SQL query to list the MySQL InnoDB cluster names: SELECT * FROM
mysql_innodb_cluster_metadata.clusters;

• use_gr_notifications

Introduced 8.0.17

Type Integer

Default Value 0

Valid Values 0

82

Configuration File Options

1

Enables Group Replication notifications. When enabled, Router is asynchronously notified about
most cluster changes. It can be enabled manually in mysqlrouter.conf or enabled there using
the --conf-use-gr-notifications command-line option during bootstrap.

When Router receives any of the following notifications from Group Replication, it refreshes the
cluster metadata:

• group_replication/membership/quorum_loss

• group_replication/membership/view

• group_replication/status/role_change

• group_replication/status/state_change

Note

The Group Replication notifications feature requires an X Protocol connection
from Router to each instance, which must be running X Plugin. If an X
Protocol connection is not available, the metadata refresh is carried out at
ttl intervals as though the notifications feature was not enabled.

Although the Group Replication notifications rely on an X Protocol connection,
received notifications trigger a metadata refresh which uses a classic MySQL
protocol connection to the instance.

When enabled, the Group Replication notification feature allows a higher ttl value because the
metadata refreshes carried out at ttl intervals become an additional safeguard, rather than the
primary means of keeping the information about the cluster state up to date. When disabled, a low
ttl value (such as 0.5s, the default) is recommended to avoid the overhead of reconnecting to the
instances and querying them for metadata changes often.

• ttl

Type (≥ 8.0.12) Numeric

Type (8.0.11) Integer

Default Value (≥ 8.0.12) 0.5

Default Value (8.0.11) 5

Minimum Value 0

Maximum Value (≥ 8.0.12) 3600

Maximum Value (8.0.11) 4294967295

Time to live (in seconds) of information in the metadata cache.

Accepts either an integer or a floating point value. The granularity is limited to milliseconds, where
0.001 equates to one millisecond. Precision is truncated to the supported range; for example

83

Configuration File Options

TTL=0.0119 is treated as 11 milliseconds. The value 0 means that the metadata cache module
queries the metadata continuously in a tight loop.

The value must be smaller than auth_cache_refresh_interval and auth_cache_ttl else
Router won't start.

The only supported decimal separator is '.' (a period) regardless of locale, and scientific notation,
such as TTL=1.6E-2, is supported.

Floating point support was added in MySQL Router 8.0.12.

• destination

Introduced 8.0.21

Type String

Default Value (Windows) CON

Default Value (Other) /dev/stderr

Valid Values (Windows) CON

NUL

Valid Values (Other) /dev/null

/dev/stderr

/dev/stdout

Direct console log output to this device destination; set under the [consolelog] section. Defaults to /
dev/stderr and an empty value uses the default.

Available values are: /dev/stdout, /dev/stderr, and /dev/null; or CON and NUL on Windows.

[DEFAULT]
logging_folder=

[consolelog]
destination=/dev/null

• filename

Introduced 8.0.21

Type String

Redirect log output to a specific file named filename that resides in the logging_folder
directory. It must be defined as a file name and not a file path, and works with both the [logger] and
[filelog] sections.

Using filename with [logger] to define the default value for the [filelog] section, and it also changes
Router's log file from mysqlrouter.log to this new value.

[DEFAULT]
logging_folder=/path/to/logs/

[logger]
filename = router_error.log

Router does not report an error if filename is set under [logger] but no file-based logger is used.

Using filename with [filelog]:

[DEFAULT]
logging_folder=/path/to/logs/

84

Configuration File Options

[filelog:a]
filename = a_router_error.log

[filelog:b]
filename = b_router_error.log

If filename is empty or not set under [filelog] then the filename definition under [logger] is used; and
the default log file is used (mysqlrouter.log) if filename is not set under [logger] either.

Related, directing console output to /dev/null:

[DEFAULT]
logging_folder=

[consolelog]
destination=/dev/null

• level

Type String

Default Value INFO

Valid Values (≥ 8.0.20) DEBUG

NOTE

INFO

WARNING

ERROR

SYSTEM

FATAL

Valid Values (≤ 8.0.19) DEBUG

INFO

WARNING

ERROR

FATAL

Use the logger plugin to log notices, errors, and debugging information. The available log levels are
DEBUG, NOTE, INFO (default), WARNING, ERROR, SYSTEM, and FATAL. These values are case-
insensitive.

The INFO level displays all informational messages, warnings, and error messages. The DEBUG
level displays additional diagnostic information from the Router code, including successful routes.
SYSTEM includes messages such as startup messages.

[logger]

85

Configuration File Options

level = DEBUG

Output behavior depends on the logging_folder option. Setting logging_folder to a folder
saves a log file named mysqlrouter.log to that folder. Setting logging_folder to an empty
value, or not setting it, outputs the log to the console. It is set in the [DEFAULT] section.

Note

The "SYSTEM" and "NOTE" error levels were added in MySQL Router
8.0.20.

Bootstrapping accepts a configuration file using --config and utilizes the logger level definition.

• timestamp_precision

Introduced 8.0.18

Type String

The logger timestamp precision; the available definitions with example values are:

• second, sec, or s: 2019-05-10 12:10:25

• millisecond, msec, or ms: 2019-05-10 12:10:25.428

• microsecond, usec, or us: 2019-05-10 12:10:25.428754

• nanosecond, nsec, ns: 2019-05-10 12:10:25.428754000

• port

Introduced 8.0.16

Type Integer

Default Value 8081

The TCP port listening for HTTP requests; it defaults to 8081.

• bind_address

Introduced 8.0.16

Type String

Default Value 0.0.0.0

IP address bound to the HTTP port; it defaults to 0.0.0.0.

• static_folder

Introduced 8.0.16

Type String

Base directory for static file requests; it's empty by default. An empty value means no static files are
served.

• require_realm

Introduced 8.0.16

Type String

Name of the [http_auth_realm] instance.

86

Configuration File Options

• ssl

Introduced 8.0.16

Type Integer

Default Value 1

Valid Values 1

0

The value 1 enables SSL, and 0 disables it. TLS clients supporting TLSv1.2 or later are required.
This is defined under the [http_server] section.

• ssl_cert

Introduced 8.0.16

Type String

File name of the certificate and its chain certifications in PEM format; required if ssl=1. This is defined
under the [http_server] section.

• ssl_key

Introduced 8.0.16

Type String

File name of the key in PEM format; required if ssl=1. This is defined under the [http_server] section.

• ssl_cipher

Introduced 8.0.16

Type String

The cipher-spec (see openssl's 'ciphers' list). Defaults to a comma-separated list of all approved
ciphers. Unknown ciphers are silently ignored. Fails if list of ciphers is empty and ssl=1. This is
defined under the [http_server] section.

• ssl_dh_param

Introduced 8.0.16

Type String

Read the DH parameter from this file in PEM format. Uses the dh-param from RFC 5114 by default if
ssl=1. This is defined under the [http_server] section.

• interval

Type Integer

Default Value 60

Determines the frequency (in seconds) that MySQL Router sends a keepalive ping message. The
total number of pings is determiend by the runs configuration option.

[keepalive]
interval = 42

87

Configuration File Options

runs = 0

Note

The keepalive plugin exists for testing purposes and is safe to remove after
MySQL Router is configured. Because at least one active plugin is required to
launch, the default configuration file enables the keepalive plugin so MySQL
Router does not immediately exit. The keepalive plugin is not active if another
plugin is enabled.

• runs

Type Integer

Default Value 0

Limits the number of intervals MySQL Router sends a keepalive ping message. Setting it to 0
(default) means it executes until MySQL Router is shut down. The frequency is determined by the
interval option.

[keepalive]
interval = 42
runs = 0

Note

The keepalive plugin exists for testing purposes and is safe to remove after
MySQL Router is configured. Because at least one active plugin is required to
launch, the default configuration file enables the keepalive plugin so MySQL
Router does not immediately exit. The keepalive plugin is not active if another
plugin is enabled.

• backend

Introduced 8.0.22

Type String

Default Value (Windows) poll

Default Value (Other) linux_epoll

Valid Values (Windows) poll

Valid Values (Other) linux_epoll

poll

The IO backend that handles async operations. The generic poll backend is available on all
platforms, while each platform may provide alternative backends.

Options are poll (all platforms) and linux_epoll (Linux). Defaults to linux_epoll on Linux.

[io]
backend=linux_epoll

88

Configuration File Options

threads=32

Note

This is one of several backend options, each in a different [section] with a
different purpose:

• [io] backend for async operations.

• [http_auth_realm] backend defines a custom name for a backend
associated with a particular realm

• [http_auth_backend] backend type of auth backend

• threads

Introduced 8.0.22

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1024

The number of IO threads that handles connections.

Defaults to 0 (uses all available CPU cores/threads) but also accepts a number between 1 and 1024.
At runtime the system may restrict the upper limit beyond this value.

Note

Support was added in MySQL Router 8.0.22.

[io]
backend=linux_epoll
threads=32

• connection_sharing_delay

Introduced 8.0.32

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 2^63-1

Seconds to wait before moving an idle connection to the connection pool.

See Section 1.4, “Connection Sharing and Reuse”.

This option was added in MySQL Router 8.0.32.

• connection_sharing

Introduced 8.0.32

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

89

Configuration File Options

Whether to enable connection sharing.

See Section 1.4, “Connection Sharing and Reuse”.

This option was added in MySQL Router 8.0.32.

• idle_timeout

Introduced 8.0.29

Type Integer

Default Value 5

Minimum Value 1

Maximum Value 4294967296

Seconds to keep the idling connection in the connection pool before closing it. This is set in the
[connection_pool] section, and affects all routes in the connection pool. Defaults to 5, accepts a
value between 1 and 4294967296.

This option was added in MySQL Router 8.0.29.

• max_idle_server_connections

Introduced 8.0.29

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967296

Connections to keep open in the connection pool after the client disconnects; and is set in the
[connection_pool] section. The default is 0, which disables connection pooling.

This option was added in MySQL Router 8.0.29.

• backend

Introduced 8.0.16

Type String

Name of the [http_auth_backend] section.

Note

This is one of several backend options, each in a different [section] with a
different purpose:

• [io] backend for async operations.

• [http_auth_realm] backend defines a custom name for a backend
associated with a particular realm

• [http_auth_backend] backend type of auth backend

• method

Introduced 8.0.16

Type String

90

Configuration File Options

Default Value basic

The HTTP authentication method; defaults to basic.

• name

Introduced 8.0.16

Type String

Name of the realm presented to the authentication user.

• require

Introduced 8.0.16

Type String

Default Value valid-user

Requires that the user validates with the authentication backend; defaults to valid-user, which
enables this check.

• backend

Introduced 8.0.16

Type String

Default Value file

Name of the backend implementation; accepted values are file (default) or metadata_cache.

Note

metadata_cache support was added in MySQL Router 8.0.20.

[http_auth_backend:name]
backend=metadata_cache

[metadata_cache]
auth_cache_refresh_interval=2
auth_cache_ttl=-1

Note

This is one of several backend options, each in a different [section] with a
different purpose:

• [io] backend for async operations.

• [http_auth_realm] backend defines a custom name for a backend
associated with a particular realm

• [http_auth_backend] backend type of auth backend

• filename

Introduced 8.0.16

Type String

Name of the backend storage file, is relative to the data_folder directory.
91

Configuration File Options

• cluster_type

Introduced 8.0.19

Type String

Valid Values gr

rs

The type of AdminAPI object that the Router was bootstrapped against, which is either an InnoDB
ReplicaSet (rs) or InnoDB Cluster (gr). Use 'gr' for cluster sets.

Bootstrapping evaluates the target instance and sets this option accordingly in the generated
configuration file.

This option was added in MySQL Router 8.0.19; the same version InnoDB ReplicaSet support was
added.

• error_quarantine_interval

Introduced 8.0.32

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

Defines the interval, in seconds, between checks on quarantined destination connectivity. If
a connection is possible, the destination is moved out of quarantine and made available for
connections.

If an invalid value is defined, MySQL Router fails to start and an error is logged.

For example:

 [destination_status]
 error_quarantine_threshold=5
 error_quarantine_interval=20

Note

If undefined in the configuration file, the default value, 1, is used.

• error_quarantine_threshold

Introduced 8.0.32

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 3600

Defines the threshold of consecutive, failed attempts to connect to a routing destination before
MySQL Router adds the destination to quarantine and stops using it as a destination until it is

92

Configuration File Example

cleared by the quarantine mechanism. For example, if set to 5, the destination is quarantined after 5
consecutive, failed attempts to connect to it.

If an invalid value is defined, MySQL Router fails to start and an error is logged.

For example:

 [destination_status]
 error_quarantine_threshold=5
 error_quarantine_interval=20

Note

If undefined in the configuration file, the default value, 1, is used.

4.3.4 Configuration File Example

Here is a basic connection routing example to a MySQL InnoDB Cluster named myCluster. Both
classic MySQL protocol and X Protocol are enabled, it uses TCP/IP connections instead of Unix
domain sockets, and it was generated using --bootstrap as a standalone configuration with --
directory set to /tmp/router.

In this example, read-write (primary) traffic is sent to port 6446 (classic) or 6448 (X Protocol), and read-
only (secondaries) are accessed using port 6447 (classic) or 6449 (X Protocol).

The routing section keys (such as myCluster_rw) are optional but descriptive section keys help while
debugging and also allows multiple configuration sections for the same plugin.

The destinations option references metadata-cache to utilize InnoDB cluster's metadata cache that
dynamically configures host information. Alternatively, destinations could be a comma-separated
list of hosts to accommodate basic connection routing without InnoDB cluster.

The options starting with [http_server] reference the REST API that is enabled by default. For
additional details, see Chapter 6, MySQL Router REST API

File automatically generated during MySQL Router bootstrap
[DEFAULT]
logging_folder=/tmp/router/log
runtime_folder=/tmp/router/run
data_folder=/tmp/router/data
keyring_path=/tmp/router/data/keyring
master_key_path=/tmp/router/mysqlrouter.key
connect_timeout=15
read_timeout=30
dynamic_state=/tmp/router/data/state.json
client_ssl_cert=/tmp/router/data/router-cert.pem
client_ssl_key=/tmp/router/data/router-key.pem
client_ssl_mode=PREFERRED
server_ssl_mode=AS_CLIENT
server_ssl_verify=DISABLED

[logger]
level = INFO

[metadata_cache:myCluster]
cluster_type=gr
router_id=1
user=mysql_router1_x9v4uk10nbcd
metadata_cluster=myCluster
ttl=0.5
auth_cache_ttl=-1
auth_cache_refresh_interval=2
use_gr_notifications=0

[routing:myCluster_rw]

93

TLS Configuration

bind_address=0.0.0.0
bind_port=6446
destinations=metadata-cache://myCluster/?role=PRIMARY
routing_strategy=first-available
protocol=classic

[routing:myCluster_ro]
bind_address=0.0.0.0
bind_port=6447
destinations=metadata-cache://myCluster/?role=SECONDARY
routing_strategy=round-robin-with-fallback
protocol=classic

[routing:myCluster_x_rw]
bind_address=0.0.0.0
bind_port=6448
destinations=metadata-cache://myCluster/?role=PRIMARY
routing_strategy=first-available
protocol=x

[routing:myCluster_x_ro]
bind_address=0.0.0.0
bind_port=6449
destinations=metadata-cache://myCluster/?role=SECONDARY
routing_strategy=round-robin-with-fallback
protocol=x

[http_server]
port=8443
ssl=1
ssl_cert=/tmp/router/data/router-cert.pem
ssl_key=/tmp/router/data/router-key.pem

[http_auth_realm:default_auth_realm]
backend=default_auth_backend
method=basic
name=default_realm

[rest_router]
require_realm=default_auth_realm

[rest_api]

[http_auth_backend:default_auth_backend]
backend=metadata_cache

[rest_routing]
require_realm=default_auth_realm

[rest_metadata_cache]
require_realm=default_auth_realm

4.4 TLS Configuration
Important

This section is a draft and subject to change.

Before 8.0.23, there were two TCP connections and one TLS connection:

client <-> router // TCP
 router <-> server // TCP
client <------------> server // TLS

Router forwards the TLS packets as is, and this behavior can be configured with these Router
configuration settings:

client_ssl_mode = PASSTHROUGH

94

TLS Endpoint Configuration

server_ssl_mode = AS_CLIENT

Where PASSTHOUGH means "forward everything to the server" and the client and server decide if
they want to switch to TLS or not.

As of 8.0.23, the default behavior is:

client_ssl_mode = PREFERRED
server_ssl_mode = AS_CLIENT

This establishes TLS connections between the client and Router if the client desires switching to TLS
and the server supports TLS. This also matches the existing behaviour for client and server without the
Router in-between.

TLS Endpoint Configuration

As of Router 8.0.23, Router can accept the TLS session and open a new TLS session to the server.
For example:

client <-> router // TCP
 router <-> server // TCP
client <-> router // TLS
 router <-> server // TLS

To accept a TLS session from a client, Router has to present a TLS client with the certificate using
client_ssl_cert and client_ssl_key.

To connect a TLS session to a server, Router verifies the server's certificates using
server_ssl_verify server_ssl_verify server_ssl_ca server_ssl_capath
server_ssl_crl, and server_ssl_crlpath.

Note

The TLSv1 and TLSv1.1 connection protocols are deprecated as of MySQL
Router 8.0.26 and support for them is subject to removal in a future version.

SSL Modes

Because there are two TLS sessions (between client and Router; Router and server) there can also be
two independent states of the connection.

Both client_ssl_mode and server_ssl_mode accept DISABLED, PREFERRED, or
REQUIRED. In addition, server_ssl_mode accepts AS_CLIENT, and client_ssl_mode accepts
PASSTHROUGH.

• DISABLED: Router does not offer encryption to the client, and the client can't switch the client-router
connection to TLS. The client may abort the connection if it must switch to TLS.

• PREFERRED (default): Router accepts a TLS connection from the client, but is also okay if the client
does not switch to encryption.

• REQUIRED: Router accepts a TLS connection from the client, and will fail if the connection is not
switched to TLS before authentication finishes.

• PASSTHROUGH: Means 'forward everything to the server' and lets the client and server decide if they
want to switch to TLS or not. This was default behavior before Router 8.0.23, and is only accepted by
client_ssl_mode.

• AS_CLIENT (default): if the client-router connection is encrypted then also encrypt the router-server
connection, otherwise do not. This option is only accepted by server_ssl_mode.

95

Additional Related Options

Additional Related Options

The server_ssl_verify option splits out 'VERIFY_CA' and 'VERIFY_IDENTITY' from the
'ssl_mode' that is known from the MySQL client and MySQL server. In the MySQL client's case,
VERIFY_CA means ssl_mode=REQUIRED and to verify the CA|IDENTITY. In Router's case, Router
verifies certificates independent of server_ssl_mode; instead it's purely based on whether the
connection is encrypted and if server_ssl_verify is not DISABLED, in which case it is verified.

Additional options include server_ssl_dh_params, client_ssl_dh_params,
server_ssl_dh_params, client_ssl_dh_params, server_ssl_curves, and
client_ssl_curves.

All routing options and additional information is available at Routing Options.

96

Chapter 5 MySQL Router Application

Table of Contents
5.1 Starting MySQL Router ... 97
5.2 Using the Logging Feature .. 98

The MySQL Router is an executable that typically runs on the same machine as the application that
uses it. This chapter describes the application including available options, how to start the application,
and how to use the logging feature.

There are a number of options available for controlling the application when executing mysqlrouter.
See the mysqlrouter documentation for information about the command-line options.

5.1 Starting MySQL Router

MySQL Router requires a configuration file. Although Router searches a predetermined list of default
paths for the configuration file, it is common to start Router by passing in a configuration file with the --
config option.

The process of configuring MySQL Router to automatically start when the host reboots is similar to the
steps needed for MySQL server, which is described at Starting and Stopping MySQL Automatically.

For example, when using systemd:

$> sudo systemctl start mysqlrouter.service
$> sudo systemctl enable mysqlrouter.service

Example Log Output

Starting MySQL Router generates several log entries, for example when connecting to a sandboxed
InnoDB Cluster:

$> mysqlrouter --config=/path/to/file/my_router.conf
^C

$> less /path/to/log/mysqlrouter.log
2019-04-07 16:30:49 INFO [0x7000022fc000] [routing:devCluster_default_ro] started: listening on 0.0.0.0:6447; read-only
2019-04-07 16:30:49 INFO [0x70000237f000] [routing:devCluster_default_rw] started: listening on 0.0.0.0:6446; read-write
2019-04-07 16:30:49 INFO [0x700002402000] [routing:devCluster_default_x_ro] started: listening on 0.0.0.0:64470; read-only
2019-04-07 16:30:49 INFO [0x700002485000] [routing:devCluster_default_x_rw] started: listening on 0.0.0.0:64460; read-write
2019-04-07 16:30:49 INFO [0x700002279000] Starting Metadata Cache
2019-04-07 16:30:49 INFO [0x700002279000] Connections using ssl_mode 'PREFERRED'
2019-04-07 16:30:49 INFO [0x700002279000] Connected with metadata server running on 127.0.0.1:3310
2019-04-07 16:30:49 INFO [0x700002279000] Changes detected in cluster 'devCluster' after metadata refresh
2019-04-07 16:30:49 INFO [0x700002279000] Metadata for cluster 'devCluster' has 1 replicasets:
2019-04-07 16:30:49 INFO [0x700002279000] 'default' (3 members, single-master)
2019-04-07 16:30:49 INFO [0x700002279000] localhost:3310 / 33100 - role=HA mode=RW
2019-04-07 16:30:49 INFO [0x700002279000] localhost:3320 / 33200 - role=HA mode=RO
2019-04-07 16:30:49 INFO [0x700002279000] localhost:3330 / 33300 - role=HA mode=RO
2019-04-07 16:30:49 INFO [0x700002714000] Connected with metadata server running on 127.0.0.1:3310

The log shows that MySQL Router is listening on four ports, lists the active routing strategies by name,
InnoDB Cluster information, and more.

For example, the first line lists the active routing strategy named
routing:devCluster_default_ro, is listening on port 6447, and its mode is read-only. The
corresponding section in the MySQL Router configuration file looks similar to:

[routing:devCluster_default_ro]
bind_address=0.0.0.0

97

https://dev.mysql.com/doc/refman/8.0/en/automatic-start.html

Example Start and Stop Scripts

bind_port=6447
destinations=metadata-cache://devCluster/default?role=SECONDARY
mode=read-only
protocol=classic

See how the name, port, and mode were taken directly from the configuration file. In this way, you can
quickly determine which routing strategies are active. This could be particularly useful if running several
instances of MySQL Router, or if multiple configuration files are loaded.

On Windows, MySQL Router can install, remove, or start the service. By default, the service name is
MySQLRouter. For additional information, see the --service and related command line options for
Windows services.

Example Start and Stop Scripts

Bootstrapping MySQL Router with the --directory option generates bash scripts to start and stop
MySQL Router, which look similar to the following:

// *** start.sh *********************** //

#!/bin/bash
basedir=/opt/myrouter
ROUTER_PID=$basedir/mysqlrouter.pid /usr/bin/mysqlrouter -c $basedir/mysqlrouter.conf &
disown %-

// *** stop.sh *********************** //

if [-f /opt/myrouter/mysqlrouter.pid]; then
 kill -HUP `cat /opt/myrouter/mysqlrouter.pid`
 rm -f /opt/myrouter/mysqlrouter.pid
fi

5.2 Using the Logging Feature

The logging feature can be handy for developing and testing your application and deployment of the
MySQL Router. To use logging, enable the logging level option in the configuration file under the
section named [logger]. For example:

[logger]
level = INFO

Set the log file's location with the logging_folder option, defined as a directory path under the
[DEFAULT] section in the configuration file. The logging file is named mysqlrouter.log. For
example:

[DEFAULT]
Logs are sent to /path/to/folder/mysqlrouter.log
logging_folder = /path/to/folder

[logger]
level = DEBUG

Setting logging_folder to an empty string sends logs to the console (stdout).

Two common logging levels are INFO (default) and DEBUG:

• INFO: includes informational messages like those shown above, and is the default mode

• DEBUG: includes messages generated inside Router's source code for use in diagnostics. The DEBUG
mode presents verbose information concerning the inner workings of Router. While it may not be
of interest to the application, use of the DEBUG mode may be helpful if you encounter a problem or
when Router is not behaving as you expect.

98

Log Rotation

The following example shows what the messages look like for the DEBUG logging level; compare the
INFO and DEBUG messages:

2019-04-07 18:25:56 INFO [0x700009673000] Connections using ssl_mode 'PREFERRED'
2019-04-07 18:25:56 INFO [0x700009673000] Connected with metadata server running on 127.0.0.1:3310
2019-04-07 18:25:56 DEBUG [0x700009673000] Updating metadata information for cluster 'devCluster'
2019-04-07 18:25:56 DEBUG [0x700009673000] Updating replicaset status from GR for 'default'
2019-04-07 18:25:56 DEBUG [0x700009673000] Replicaset 'default' has 3 members in metadata, 3 in status table
2019-04-07 18:25:56 DEBUG [0x700009673000] End updating replicaset for 'default'
2019-04-07 18:25:56 INFO [0x700009673000] Changes detected in cluster 'devCluster' after metadata refresh
2019-04-07 18:25:56 INFO [0x700009673000] Metadata for cluster 'devCluster' has 1 replicasets:

Log Rotation

Router supports log rotation; listed here are scenarios with example implementations.

Note

This functionality is not supported on Windows.

Rotation On Demand

Log rotation on demand can be accomplished in two steps: rename the log file, and then notify Router
so it creates and switches to a new log file.

Execute log rotation either directly from the system's shell, or from a script that could be called
automatically as a scheduled task. For example:

sudo mv /var/log/mysqlrouter/mysqlrouter.log /var/log/mysqlrouter/mysqlrouter.log.old
kill -HUP $(pidof mysqlrouter)

logrotate

The logrotate mechanism can also rotate Router's log file. After rotating, Router would be notified
to reopen the log file and this is accomplished by sending HUP to the Router process. An example
logrotate configuration file:

/var/log/mysqlrouter/mysqlrouter.log {
 rotate 9
 size 10M
 create 0755 mysqlrouter mysqlrouter
 postrotate
 kill -HUP $(pidof mysqlrouter)
 endscript
}

The example rotates the logs as mysqlrouter.log, mysqlrouter.log.1, ..., mysqlrouter.log.9. The rotation
is triggered based on the size of the current mysqlrouter.log file, only if the size is greater than 10MB.
Assuming this configuration is saved as /etc/mysqlrouter/logrotate.conf, it might be
executed periodically (added to cron) as follows:

[sudo] logrotate /etc/mysqlrouter/logrotate.conf

99

https://linux.die.net/man/8/logrotate

100

Chapter 6 MySQL Router REST API

Table of Contents
6.1 A Simple MySQL Router REST API Guide ... 101
6.2 MySQL Router REST API Reference ... 103

MySQL Router REST API interface.

6.1 A Simple MySQL Router REST API Guide
This guide sets up a basic Router REST API, adds basic authentication, and exposes a route to check
Router's status. The REST API is configured using configuration sections and options are required to
enable and use the REST API. For example, here's a minimal MySQL Router configuration file that
enables the most basic REST API functionality:

[DEFAULT]
logging_folder=

Exposes http://127.0.0.1:8081
[http_server]

Exposes /api/20190715/swagger.json
[rest_api]

A typical Router configuration file contains other options but this guide focuses on the REST API.
Save this file (our guide assumes (/foo/mysqlrouter.conf), start Router loading this file (such
as mysqlrouter -c /foo/mysqlrouter.conf, and confirm that http://127.0.0.1:8081/
api/20190715/swagger.json exists. Example swagger.json content:

{
 "swagger": "2.0",
 "info": {
 "title": "MySQL Router",
 "description": "API of MySQL Router",
 "version": "20190715"
 },
 "basePath": "/api/20190715",
 "tags": [],
 "paths": {},
 "definitions": {}
}

This demonstrates that the Router REST API plugin is loaded, and that additional plugins exposing
routes and paths are not enabled. Authentication is not required to retrieve swagger.json.

Note

The API version number may change in a future release; and future releases
may include functionality to retrieve this API integer.

Next, let's enable the simple rest_router plugin to expose the router/status path. Authentication is
required, and enabling authentication requires additional configuration options. For example:

[DEFAULT]
logging_folder=

Exposes http://127.0.0.1:8081
[http_server]

Exposes /api/20190715/swagger.json
[rest_api]

Exposes /api/20190715/router/status
[rest_router]

101

A Simple MySQL Router REST API Guide

require_realm=somerealm

Exposes /api/20190715/routes/*
#[rest_routing]
#require_realm=somerealm

Exposes /api/20190715/metadata/*
#[rest_metadata_cache]
#require_realm=somerealm

Define our realm
[http_auth_realm:somerealm]
backend=somebackend
method=basic
name=Some Realm

Define our backend; this file must exist and validate
[http_auth_backend:somebackend]
backend=file
filename=/etc/mysqlrouter/mysqlrouter.pwd

Router uses realms for authentication, and the mysqlrouter_passwd command-line utility generates
and manages these users. For example, this creates a user named someuser and saves it as a new
file named /etc/mysqlrouter/mysqlrouter.pwd:

Generate and save the user/pass
$> mysqlrouter_passwd set /etc/mysqlrouter/mysqlrouter.pwd someuser
Please enter password:

Optionally list usernames and salted passwords in the file:
$> mysqlrouter_passwd list /etc/mysqlrouter/mysqlrouter.pwd

someuser:$5$43tfYEwobPBLkYDB$XnHyC0uXY1F4f6ryd8Vj5CUnEqcH3tqf4pud9kqIji3

Restarting Router with our new configuration file generates a different swagger.json that now
contains [rest_router] plugin information for its /router/status route:

{
 "swagger": "2.0",
 "info": {
 "title": "MySQL Router",
 "description": "API of MySQL Router",
 "version": "20190715"
 },
 "basePath": "/api/20190715",
 "tags": [
 {
 "name": "app",
 "description": "Application"
 }
],
 "paths": {
 "/router/status": {
 "get": {
 "tags": [
 "app"
],
 "description": "Get status of the application",
 "responses": {
 "200": {
 "description": "status of application",
 "schema": {
 "$ref": "#/definitions/RouterStatus"
 }
 }
 }
 }
 }
 },
 "definitions": {
 "RouterStatus": {

102

MySQL Router REST API Reference

 "type": "object",
 "properties": {
 "timeStarted": {
 "type": "string",
 "format": "data-time"
 },
 "processId": {
 "type": "integer"
 },
 "version": {
 "type": "string"
 },
 "hostname": {
 "type": "string"
 },
 "productEdition": {
 "type": "string"
 }
 }
 }
 }
}

Loading http://127.0.0.1:8081/api/20190715/router/status prompts for a username and password (that
we created in our example) and on success returns Router's current status. For example:

{
 "processId": 1883,
 "productEdition": "MySQL Community - GPL",
 "timeStarted": "2022-01-25T21:23:50.442399Z",
 "version": "8.0.42",
 "hostname": "boat"
}

We set up a basic Router REST API with an authenticated backend; a REST API with two of the REST
API plugins enabled.

6.2 MySQL Router REST API Reference
Knowing the basePath prefix is assumed. The basePath contains the API version, such as "/
api/20190715". For example, if the endpoint is "/metadata" then the URL is similar to "https://
localhost:8443/api/20190715/metadata". See Section 6.1, “A Simple MySQL Router REST API Guide”
for related information.

Table 6.1 MySQL Router REST API Endpoints

Endpoint Description Plugin Method

/metadata Get metadata instance
names

rest_metadata_cacheGET

/metadata/{metadataName}/config Get metadata configuration
details

rest_metadata_cacheGET

/metadata/{metadataName}/status Check metadata status rest_metadata_cacheGET

/router/status Check Router status rest_router GET

/routes Get list of routes rest_routing GET

/routes/{routeName}/blockedHosts Get list of blocked IPs rest_routing GET

/routes/{routeName}/config Get route configuration
details

rest_routing GET

/routes/{routeName}/connections Get route connections rest_routing GET

/routes/{routeName}/destinations Get route destinations rest_routing GET

/routes/{routeName}/health Check route health rest_routing GET

/routes/{routeName}/status Check route status rest_routing GET

103

metadata

Endpoint Description Plugin Method

/connection_pool/{name}/config Check connection_pool
config

rest_connection_poolGET

/connection_pool/{name}/status Check connection_pool
status

rest_connection_poolGET

swagger.json Get swagger file containing
available paths and
information

rest_api GET

metadata

GET /metadata

Get list of the metadata cache instances

Available Responses

200 Description: List of metadata cache instances

Response Schema

items array

Contains 'name' fields; the name
of the metadata instance

Example 200 response data:

{
 "items": [
 {
 "name": "myCluster"
 }
]
}

GET /metadata/{metadataName}/config

Get configuration of the metadata cache of a cluster's replicaset

Available Responses

200 Description: Config of metadata cache

Response Schema

clusterName string

Optional, name of the replication
group

timeRefreshInMs integer

TTL number

groupReplicationId string

Optional

nodes array

An array; items include the
hostname (string) and port
(integer) properties

104

metadata

404 Description: Cache not found

Path Parameters

metadataName (required) string

Name of cluster

Example 200 response data:

{
 "clusterName": "myCluster",
 "timeRefreshInMs": 500,
 "groupReplicationId": "e57e9c11-abfe-11ea-b747-0800278566cb",
 "nodes": [
 {
 "hostname": "127.0.0.1",
 "port": 3310
 },
 {
 "hostname": "127.0.0.1",
 "port": 3320
 },
 {
 "hostname": "127.0.0.1",
 "port": 3330
 }
]
}

GET /metadata/{metadataName}/status

Get metadata cache status for a cluster's replicaset

Available Responses

200 Description: Status of the metadata cache

Response Schema

lastRefreshHostname string

lastRefreshPort integer

timeLastRefreshFailed string

timeLastRefreshSucceeded string

refreshSucceeded integer

refreshFailed integer

404 Description: Cache not found

Path Parameters

metadataName (required) string

Name of the cluster

Example 200 response data:

105

router

{
 "refreshFailed": 0,
 "refreshSucceeded": 798,
 "timeLastRefreshSucceeded": "2020-06-11T21:17:37.270303Z",
 "lastRefreshHostname": "127.0.0.1",
 "lastRefreshPort": 3310
}

router

GET /router/status

Get status of router

Available Responses

200 Description: Status of Router

Response Content-Type: application/json

Response Schema

hostname string

Name of the host the application
is running on; it may be empty if
a host is not configured

processId integer

Process ID of the application

productEdition string

Product edition, such as "MySQL
Community - GPL"

timeStarted string

A date-time string that the
application was started, such as
"2020-06-11T22:08:30.978640Z"

version string

Version of the application, such
as "8.0.22"

Example 200 response data:

{
 "processId": 6435,
 "productEdition": "MySQL Community - GPL",
 "timeStarted": "2020-06-11T21:10:49.420619Z",
 "version": "8.0.20",
 "hostname": "boat"
}

routes

GET /routes

Get list (names) of the routes supported by MySQL Router

106

routes

Available Responses

200 Description: List of the supported routes

Response Schema

items array

A list of routes

Example 200 response data:

{
 "items": [
 {
 "name": "myCluster_ro"
 },
 {
 "name": "myCluster_rw"
 },
 {
 "name": "myCluster_x_ro"
 },
 {
 "name": "myCluster_x_rw"
 }
]
}

GET /routes/{routeName}/config

Get config of a route

Available Responses

200 Description: Config of a route

Response Schema

bindAddress string

Address the route is listening on

bindPort integer

TCP port the router is listening on

clientConnectTimeoutInMs integer

Connection timeout for incoming
connections

destinationConnectTimeoutInMs integer

Connection timeout for outgoing
connections

maxActiveConnections integer

Maximum number of active
connections

maxConnectErrors integer

Maximum number of adjacent
connection errors before the
client gets blocked

107

routes

protocol string

Protocol, either 'classic' or 'x'

socket string

Listening socket or named pipe

routingStrategy string

The routing strategy used; such
as "round-robin", "round-robin-
with-fallback", "first-available",
or "next-available" as defined by
Router's strategy configuration
option

mode string

The mode used; such as "read-
write" or "read-only" as defined
by Router's mode configuration
option

404 Description: Route not found

Path Parameters

routeName (required) string

Name of a route

Example 200 response data:

{
 "bindAddress": "0.0.0.0",
 "bindPort": 6446,
 "clientConnectTimeoutInMs": 9000,
 "destinationConnectTimeoutInMs": 15000,
 "maxActiveConnections": 512,
 "maxConnectErrors": 100,
 "protocol": "classic",
 "routingStrategy": "first-available"
}

GET /routes/{routeName}/status

Get status of a route

Available Responses

200 Description: Status of a route

Response Schema

activeConnections integer

Number of active connections on
the route

totalConnections integer

Number of connections handled
by the route

108

routes

blockedHosts integer

Number of blocked hosts

404 Description: Route not found

Example 200 response data:

{
 "activeConnections": 1,
 "totalConnections": 1,
 "blockedHosts": 0
}

Path Parameters

routeName (required) string

Name of a route

GET /routes/{routeName}/health

Get health of a route

Available Responses

200 Description: Health of a route

Response Schema

isAlive boolean

404 Description: Route not found

Path Parameters

routeName (required) string

Name of a route

Example 200 response data:

{
 "isAlive": true
}

GET /routes/{routeName}/destinations

Get destinations of a route

Available Responses

200 Description: Destinations of a route

Response Schema

items array

Contains 'address' (string, IP
address of the destination node),
and 'port' (integer, port of the
destination node)

404 Description: Route not found

109

routes

Path Parameters

routeName (required) string

Name of a route

Example 200 response data:

{
 "items": [
 {
 "address": "127.0.0.1",
 "port": 3320
 },
 {
 "address": "127.0.0.1",
 "port": 3330
 }
]
}

GET /routes/{routeName}/connections

Get connections of a route

Available Responses

200 Description: Connections of a route

Response Schema

items array

Each items entry contains the
following:

• bytesFromServer: integer,
number of bytes sent from
server to the client over the
given connection

• BytesToServer: integer,
number of bytes sent from the
client to the server over the
given connection

• sourceAddress: string,
adddress:port pair of the
connection source (client)

• destinationAddress: string,
adddress:port pair of the
connection destination (server)

• timeStarted: string, timepoint of
the connection initialization

• timeConnectedToServer:
string, timepoint when the
connection successfully
established

• timeLastSentToServer: string,
timepoint when there was last

110

connection_pool

data sent from client to server
on the given connection

• timeLastReceivedFromServer:
string, timepoint when there
was last data sent from
server to client on the given
connection

404 Description: Route not found

Path Parameters

routeName (required) string

Name of a route

Example 200 response data:

{
 "items": [
 {
 "bytesFromServer": 2952,
 "bytesToServer": 743,
 "sourceAddress": "127.0.0.1:54098",
 "destinationAddress": "127.0.0.1:3310",
 "timeStarted": "2020-06-11T21:28:20.882204Z",
 "timeConnectedToServer": "2020-06-11T21:28:20.882513Z",
 "timeLastSentToServer": "2020-06-11T21:28:20.886969Z",
 "timeLastReceivedFromServer": "2020-06-11T21:28:20.886968Z"
 }
]
}

GET /routes/{routeName}/blockedHosts

Get blocked host list for a route

Available Responses

200 Description: Blocked host list for a route

Response Schema

items array

IP addresses that are currently
blocked by the routing core

404 Description: Route not found

Path Parameters

routeName (required) string

Name of a route

Example 200 response data:

{
 "items": []
}

connection_pool

GET /connection_pool/{name}/config

111

swagger.json

Shows maxIdleServerConnections as defined by the max_idle_server_connection
configuration option. This is the maximum number (integer) of idling server connections in the
connection pool.

Shows idleTimeout as defined by the idle_timeout configuration option. This is the timeout in
seconds (integer) before connections in the connection pool are closed.

GET /connection_pool/{name}/status

Shows reusedConnections as a count (integer) of client connections that reused a server
connection since the application started.

Shows idleServerConnections as a count (integer) of idling server connections currently in the
connection pool.

The rest_connection_pool functionality was added in MySQL Router 8.0.29.

swagger.json

GET /swagger.json

Get a swagger (OpenAPI) file for the local REST API instance. Accessing the file does not require
authentication; anyone with access to the REST API can generate and view it. The OpenAPI content
depends on the active REST API plugins.

Example 200 response data:

{
 "swagger": "2.0",
 "info": {
 "title": "MySQL Router",
 "description": "API of MySQL Router",
 "version": "20190715"
 },
 "basePath": "/api/20190715",
 "tags": [
 {
 "name": "connectionpool",
 "description": "Connection Pool"
 },
 {
 "name": "cluster",
 "description": "InnoDB Cluster"
 },
 {
 "name": "app",
 "description": "Application"
 },
 {
 "name": "routes",
 "description": "Routes"
 }
],
 "paths": {
 "/connection_pool/{connectionPoolName}/status": {
 "get": {
 "tags": [
 "connectionpool"
],
 "description": "Get status of a route",
 "responses": {
 "200": {
 "description": "status of a route",
 "schema": {
 "$ref": "#/definitions/ConnectionPoolStatus"
 }
 },
 "404": {
 "description": "route not found"

112

swagger.json

 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/connectionPoolNameParam"
 }
]
 },
 "/connection_pool/{connectionPoolName}/config": {
 "get": {
 "tags": [
 "connectionpool"
],
 "description": "Get config of a route",
 "responses": {
 "200": {
 "description": "config of a route",
 "schema": {
 "$ref": "#/definitions/ConnectionPoolConfig"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/connectionPoolNameParam"
 }
]
 },
 "/connection_pool": {
 "get": {
 "tags": [
 "connectionpool"
],
 "description": "Get list of the connection pools",
 "responses": {
 "200": {
 "description": "list of the connection pools",
 "schema": {
 "$ref": "#/definitions/ConnectionPoolList"
 }
 }
 }
 }
 },
 "/metadata/{metadataName}/config": {
 "get": {
 "tags": [
 "cluster"
],
 "description": "Get config of the metadata cache of a replicaset of a cluster",
 "responses": {
 "200": {
 "description": "config of metadata cache",
 "schema": {
 "$ref": "#/definitions/MetadataConfig"
 }
 },
 "404": {
 "description": "cache not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/metadataNameParam"
 }
]

113

swagger.json

 },
 "/metadata/{metadataName}/status": {
 "get": {
 "tags": [
 "cluster"
],
 "description": "Get status of the metadata cache of a replicaset of a cluster",
 "responses": {
 "200": {
 "description": "status of metadata cache",
 "schema": {
 "$ref": "#/definitions/MetadataStatus"
 }
 },
 "404": {
 "description": "cache not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/metadataNameParam"
 }
]
 },
 "/metadata": {
 "get": {
 "tags": [
 "cluster"
],
 "description": "Get list of the metadata cache instances",
 "responses": {
 "200": {
 "description": "list of the metadata cache instances",
 "schema": {
 "$ref": "#/definitions/MetadataList"
 }
 }
 }
 }
 },
 "/router/status": {
 "get": {
 "tags": [
 "app"
],
 "description": "Get status of the application",
 "responses": {
 "200": {
 "description": "status of application",
 "schema": {
 "$ref": "#/definitions/RouterStatus"
 }
 }
 }
 }
 },
 "/routing/status": {
 "get": {
 "tags": [
 "routing"
],
 "description": "Get status of the routing plugin",
 "responses": {
 "200": {
 "description": "status of the routing plugin",
 "schema": {
 "$ref": "#/definitions/RoutingGlobalStatus"
 }
 }
 }
 }

114

swagger.json

 },
 "/routes/{routeName}/config": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get config of a route",
 "responses": {
 "200": {
 "description": "config of a route",
 "schema": {
 "$ref": "#/definitions/RouteConfig"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/routeNameParam"
 }
]
 },
 "/routes/{routeName}/status": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get status of a route",
 "responses": {
 "200": {
 "description": "status of a route",
 "schema": {
 "$ref": "#/definitions/RouteStatus"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/routeNameParam"
 }
]
 },
 "/routes/{routeName}/health": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get health of a route",
 "responses": {
 "200": {
 "description": "health of a route",
 "schema": {
 "$ref": "#/definitions/RouteHealth"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/routeNameParam"
 }
]

115

swagger.json

 },
 "/routes/{routeName}/destinations": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get destinations of a route",
 "responses": {
 "200": {
 "description": "destinations of a route",
 "schema": {
 "$ref": "#/definitions/RouteDestinationList"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/routeNameParam"
 }
]
 },
 "/routes/{routeName}/connections": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get connections of a route",
 "responses": {
 "200": {
 "description": "connections of a route",
 "schema": {
 "$ref": "#/definitions/RouteConnectionsList"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/routeNameParam"
 }
]
 },
 "/routes/{routeName}/blockedHosts": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get blocked host list for a route",
 "responses": {
 "200": {
 "description": "blocked host list for a route",
 "schema": {
 "$ref": "#/definitions/RouteBlockedHostList"
 }
 },
 "404": {
 "description": "route not found"
 }
 }
 },
 "parameters": [
 {
 "$ref": "#/parameters/routeNameParam"
 }
]

116

swagger.json

 },
 "/routes": {
 "get": {
 "tags": [
 "routes"
],
 "description": "Get list of the routes",
 "responses": {
 "200": {
 "description": "list of the routes",
 "schema": {
 "$ref": "#/definitions/RouteList"
 }
 }
 }
 }
 }
 },
 "definitions": {
 "ConnectionPoolStatus": {
 "type": "object",
 "properties": {
 "reusedServerConnections": {
 "type": "integer"
 },
 "idleServerConnections": {
 "type": "integer"
 }
 }
 },
 "ConnectionPoolConfig": {
 "type": "object",
 "properties": {
 "idleTimeoutInMs": {
 "type": "integer"
 },
 "maxIdleServerConnections": {
 "type": "integer"
 }
 }
 },
 "ConnectionPoolSummary": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 }
 }
 },
 "ConnectionPoolList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/ConnectionPoolSummary"
 }
 }
 }
 },
 "MetadataStatus": {
 "type": "object",
 "properties": {
 "lastRefreshHostname": {
 "type": "string"
 },
 "lastRefreshPort": {
 "type": "integer"
 },
 "timeLastRefreshFailed": {
 "type": "string",
 "format": "data-time"

117

swagger.json

 },
 "timeLastRefreshSucceeded": {
 "type": "string",
 "format": "data-time"
 },
 "refreshSucceeded": {
 "type": "integer"
 },
 "refreshFailed": {
 "type": "integer"
 }
 }
 },
 "MetadataConfig": {
 "type": "object",
 "properties": {
 "clusterName": {
 "type": "string"
 },
 "timeRefreshInMs": {
 "type": "integer"
 },
 "groupReplicationId": {
 "type": "string"
 },
 "nodes": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "hostname": {
 "type": "string"
 },
 "port": {
 "type": "integer"
 }
 }
 }
 }
 }
 },
 "MetadataSummary": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 }
 }
 },
 "MetadataList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/MetadataSummary"
 }
 }
 }
 },
 "ClusterNodeSummary": {
 "type": "object",
 "properties": {
 "groupUuid": {
 "type": "string"
 },
 "serverUuid": {
 "type": "string"
 }
 }
 },
 "ClusterNodeList": {

118

swagger.json

 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/ClusterNodeSummary"
 }
 }
 }
 },
 "ClusterSummary": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 }
 }
 },
 "ClusterList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/ClusterSummary"
 }
 }
 }
 },
 "RouterStatus": {
 "type": "object",
 "properties": {
 "timeStarted": {
 "type": "string",
 "format": "data-time"
 },
 "processId": {
 "type": "integer"
 },
 "version": {
 "type": "string"
 },
 "hostname": {
 "type": "string"
 },
 "productEdition": {
 "type": "string"
 }
 }
 },
 "RoutingGlobalStatus": {
 "totalMaxConnections": "number of total connections allowed",
 "currentMaxConnections": "number of current total connections"
 },
 "RouteHealth": {
 "type": "object",
 "properties": {
 "isAlive": {
 "type": "boolean"
 }
 }
 },
 "RouteStatus": {
 "type": "object",
 "properties": {
 "activeConnections": {
 "type": "integer"
 },
 "totalConnections": {
 "type": "integer"
 },
 "blockedHosts": {

119

swagger.json

 "type": "integer"
 }
 }
 },
 "RouteConfig": {
 "type": "object",
 "properties": {
 "bindAddress": {
 "type": "string"
 },
 "bindPort": {
 "type": "integer"
 },
 "clientConnectTimeoutInMs": {
 "type": "integer"
 },
 "destinationConnectTimeoutInMs": {
 "type": "integer"
 },
 "maxActiveConnections": {
 "type": "integer"
 },
 "maxConnectErrors": {
 "type": "integer"
 },
 "protocol": {
 "type": "string"
 },
 "socket": {
 "type": "string"
 },
 "routingStrategy": {
 "type": "string"
 },
 "mode": {
 "type": "string"
 }
 }
 },
 "RouteSummary": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 }
 }
 },
 "RouteList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/RouteSummary"
 }
 }
 }
 },
 "RouteDestinationSummary": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 }
 }
 },
 "RouteDestinationList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {

120

swagger.json

 "$ref": "#/definitions/RouteDestinationSummary"
 }
 }
 }
 },
 "RouteBlockedHostSummary": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 }
 }
 },
 "RouteBlockedHostList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/RouteBlockedHostSummary"
 }
 }
 }
 },
 "RouteConnectionsSummary": {
 "type": "object",
 "properties": {
 "timeStarted": {
 "type": "string",
 "format": "date-time",
 "description": "timepoint when connection to server was initiated"
 },
 "timeConnectedToServer": {
 "type": "string",
 "format": "date-time",
 "description": "timepoint when connection to server succeeded"
 },
 "timeLastSentToServer": {
 "type": "string",
 "format": "date-time",
 "description": "timepoint when there was last data sent from client to server"
 },
 "timeLastReceivedFromServer": {
 "type": "string",
 "format": "date-time",
 "description": "timepoint when there was last data sent from server to client"
 },
 "bytesFromServer": {
 "type": "integer",
 "description": "bytes sent to destination"
 },
 "bytesToServer": {
 "type": "integer",
 "description": "bytes received from destination"
 },
 "destinationAddress": {
 "type": "string",
 "description": "address of the destination of the connection"
 },
 "sourceAddress": {
 "type": "string",
 "description": "address of the source of the connection"
 }
 }
 },
 "RouteConnectionsList": {
 "type": "object",
 "properties": {
 "items": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/RouteConnectionsSummary"

121

swagger.json

 }
 }
 }
 }
 },
 "parameters": {
 "connectionPoolNameParam": {
 "name": "connectionPoolName",
 "in": "path",
 "description": "name of a connection pool",
 "required": true,
 "type": "string"
 },
 "metadataNameParam": {
 "name": "metadataName",
 "in": "path",
 "description": "name of cluster",
 "required": true,
 "type": "string"
 },
 "clusterNameParam": {
 "name": "clusterName",
 "in": "path",
 "description": "name of cluster",
 "required": true,
 "type": "string"
 },
 "routeNameParam": {
 "name": "routeName",
 "in": "path",
 "description": "name of a route",
 "required": true,
 "type": "string"
 }
 }
}

122

Appendix A MySQL Router Frequently Asked Questions
A.1 Where do I install MySQL Router? .. 123
A.2 Can I run more than one instance of the router application? ... 123
A.3 How do I make the router application highly available? ... 123
A.4 Does the router inspect packets? .. 123
A.5 Does the router impact performance? .. 123
A.6 Please explain the different MySQL Router versions, especially why Router went from 2.1.4

to 8.0.3. .. 123
A.7 Can I bind the router to multiple IP addresses? .. 123
A.8 What is the difference between the different scheduling modes and strategies? 124
A.9 How many concurrent connections does each MySQL Router instance support? 124
A.10 How can I configure MySQL Router to use a non-default directory on a system using

AppArmor? .. 124

A.1. Where do I install MySQL Router?

For best performance, MySQL Router is typically installed on the same host as the application
that uses it. Doing so can decrease network latency, allow a local unix domain socket
connection to the application instead of TCP/IP, and typically application servers are easiest to
scale. But, this is not a requirement as Router can be installed on any host, even its own.

Note

Unix domain sockets can function with applications connecting to MySQL
Router, but not for MySQL Router connecting to a MySQL Server.

A.2. Can I run more than one instance of the router application?

Yes, see also the --directory bootstrap option.

A.3. How do I make the router application highly available?

Use MySQL Router as part of InnoDB Cluster. For additional details, see MySQL AdminAPI.

A.4. Does the router inspect packets?

No.

A.5. Does the router impact performance?

Introducing a component in a communication stream incurs a certain amount of overhead; this is
affected heavily by workload. Fortunately, performance testing on the current release has shown
approximately 1% within the same speed as a direct connection for simple redirect connection
routing.

A.6. Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to
8.0.3.

MySQL Router 2.0 was the initial version and is meant for MySQL Fabric users. It has since
been deprecated and is no longer supported.

MySQL Router 2.1 was introduced to support MySQL InnoDB cluster, and it also added new
features such as bootstrapping.

MySQL Router 8.0 expands on MySQL Router 2.1 but with a version number that aligns
with MySQL Server. In other words, Router 2.1.5 was released as Router 8.0.3 (along with
MySQL Server 8.0.3), and the 2.1.x branch was replaced by 8.0.x. The two branches are fully
compatible.

A.7. Can I bind the router to multiple IP addresses?

123

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

No, the bind_address option in the configuration file accepts only one address. However, it is
possible to use bind_addres = 0.0.0.0 to bind to all ports on the localhost.

A.8. What is the difference between the different scheduling modes and strategies?

Router 8.0 introduced the routing_strategy option. It offers the first-available, next-
available, round-robin and round-robin-with-fallback strategies. See the routing_strategy
documentation for additional details.

A.9. How many concurrent connections does each MySQL Router instance support?

Over 50,000 as of MySQL Router 8.0.22, depending on the system's poll (poll or linux_epoll)
limits and also depending on the number of available CPU cores/threads.

Earlier MySQL Router versions had had a limit closer to 5000, depending on the operating
system's poll() limits.

A.10. How can I configure MySQL Router to use a non-default directory on a system using AppArmor?

If you use the --directory option on a system using AppArmor, for example Ubuntu, you
could encounter a permissions error related to MySQL Router accessing the non-default
directory. In this case, add the path you pass to --directory to the AppArmor file as
suggested, and restart AppArmor.

124

	MySQL Router 8.0
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 Routing for MySQL InnoDB Cluster
	1.2 Cluster Metadata and State
	1.3 Connection Routing
	1.4 Connection Sharing and Reuse
	1.5 Application Considerations
	1.6 What's New in MySQL Router 8.0

	Chapter 2 Installing MySQL Router
	2.1 Installing MySQL Router on Linux
	2.2 Installing MySQL Router with Docker
	2.3 Installing MySQL Router on macOS
	2.4 Installing MySQL Router on Windows
	2.5 Installing MySQL Router from Source Code
	2.6 Upgrading MySQL Router

	Chapter 3 Deploying MySQL Router
	3.1 Bootstrapping MySQL Router
	3.2 Trying out MySQL Router in a Sandbox
	3.3 Basic Connection Routing

	Chapter 4 Configuration
	4.1 Configuration File Syntax
	4.2 Configuration File Locations
	4.3 Configuration Options
	4.3.1 Defining Options Using the Command Line
	4.3.2 MySQL Router Command Line Programs
	4.3.2.1 mysqlrouter — Command Line Options
	4.3.2.2 mysqlrouter_plugin_info — Command Line Options
	4.3.2.3 mysqlrouter_passwd — Command Line Options
	4.3.2.4 mysqlrouter_keyring — Command Line Options

	4.3.3 Configuration File Options
	4.3.4 Configuration File Example

	4.4 TLS Configuration

	Chapter 5 MySQL Router Application
	5.1 Starting MySQL Router
	5.2 Using the Logging Feature

	Chapter 6 MySQL Router REST API
	6.1 A Simple MySQL Router REST API Guide
	6.2 MySQL Router REST API Reference

	Appendix A MySQL Router Frequently Asked Questions

