Anaconda Python3.5+
Packages needed:
- numpy 1.10+
- scipy 0.17+
- pandas 0.18+
- networkx 1.10+
- scikit-learn 0.17+
- pyteomics 3.3+
pip install diffacto
diffacto.py [-h] -i I [-db [DB]] [-samples [SAMPLES]] [-log2 LOG2]
[-normalize {average,median,GMM,None}]
[-farms_mu FARMS_MU] [-farms_alpha FARMS_ALPHA]
[-reference REFERENCE] [-min_samples MIN_SAMPLES]
[-use_unique USE_UNIQUE]
[-impute_threshold IMPUTE_THRESHOLD]
[-cutoff_weight CUTOFF_WEIGHT] [-fast FAST] [-out OUT]
[-mc_out MC_OUT]
optional arguments:
-h, --help show this help message and exit
-i I Peptides abundances in CSV format. The first row
should contain names for all samples. The first column
should contain unique peptide sequences. Missing
values should be empty instead of zeros. (default:
None)
-db [DB] Protein database in FASTA format. If None, the peptide
file must have protein ID(s) in the second column.
(default: None)
-samples [SAMPLES] File of the sample list. One run and its sample group
per line, separated by tab. If None, read from peptide
file headings, then each run will be summarized as a
group. (default: None)
-log2 LOG2 Input abundances are in log scale (True) or linear
scale (False) (default: False)
-normalize {average,median,GMM,None}
Method for sample-wise normalization. (default: None)
-farms_mu FARMS_MU Hyperparameter mu (default: 0.1)
-farms_alpha FARMS_ALPHA
Hyperparameter weight of prior probability (default:
0.1)
-reference REFERENCE Names of reference sample groups (separated by
semicolon) (default: average)
-min_samples MIN_SAMPLES
Minimum number of samples peptides needed to be
quantified in (default: 1)
-use_unique USE_UNIQUE
Use unique peptides only (default: False)
-impute_threshold IMPUTE_THRESHOLD
Minimum fraction of missing values in the group.
Impute missing values if missing fraction is larger
than the threshold. (default: 0.99)
-cutoff_weight CUTOFF_WEIGHT
Peptides weighted lower than the cutoff will be
excluded (default: 0.5)
-fast FAST Allow early termination in EM calculation when noise
is sufficiently small. (default: False)
-out OUT Path to output file (writing in TSV format).
-mc_out MC_OUT Path to MCFDR output (writing in TSV format).
(default: None)
Examples are given in the example directory.