37 Star 363 Fork 218

GVPAscend/MindSpeed-MM

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
patch_sdxl.py 3.37 KB
一键复制 编辑 原始数据 按行查看 历史
J石页 提交于 2024-12-16 19:25 +08:00 . !499【特性】SDXL断点LoRA权重保存及推理
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import torch
import torch.distributed as dist
from diffusers import StableDiffusionXLPipeline
from diffusers.utils import convert_state_dict_to_diffusers
from peft.utils import get_peft_model_state_dict
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
def compute_vae_encode(batch, accelerator, vae):
images = batch.pop("pixel_values")
pixel_values = torch.stack(list(images))
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
pixel_values = pixel_values.to(vae.device, dtype=vae.dtype)
with torch.no_grad():
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
return {"model_input": accelerator.gather(model_input)}
class TorchPatcher:
@staticmethod
def new_get_preferred_device(self) -> torch.device:
"""
Return the preferred device to be used when creating tensors for collectives.
This method takes into account the asccociated process group
This patch method makes the torch npu available for distribution
"""
if dist.get_backend(self._process_group) == dist.Backend.NCCL:
return torch.device(torch.cuda.current_device())
try:
import torch_npu
return torch.device(torch_npu.npu.current_device())
except Exception as e:
return torch.device("cpu")
@classmethod
def apply_patch(cls):
# Apply the patch for npu distribution
ShardedTensor._get_preferred_device = cls.new_get_preferred_device
def config_gc():
# set gc threshold
gc.set_threshold(700, 50, 1000)
# Save Lora weights for checkpointing steps
def save_Lora_Weights(
unwrap_model,
unet,
text_encoder_one,
text_encoder_two,
train_text_encoder,
output_dir,
):
unet = unwrap_model(unet)
unet_lora_state_dict = convert_state_dict_to_diffusers(
get_peft_model_state_dict(unet)
)
if train_text_encoder:
text_encoder_one = unwrap_model(text_encoder_one)
text_encoder_two = unwrap_model(text_encoder_two)
text_encoder_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_one)
)
text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_two)
)
else:
text_encoder_lora_layers = None
text_encoder_2_lora_layers = None
StableDiffusionXLPipeline.save_lora_weights(
output_dir,
unet_lora_layers=unet_lora_state_dict,
text_encoder_lora_layers=text_encoder_lora_layers,
text_encoder_2_lora_layers=text_encoder_2_lora_layers,
)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ascend/MindSpeed-MM.git
git@gitee.com:ascend/MindSpeed-MM.git
ascend
MindSpeed-MM
MindSpeed-MM
master

搜索帮助