代码拉取完成,页面将自动刷新
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import torch
import torch.distributed as dist
from diffusers import StableDiffusionXLPipeline
from diffusers.utils import convert_state_dict_to_diffusers
from peft.utils import get_peft_model_state_dict
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
def compute_vae_encode(batch, accelerator, vae):
images = batch.pop("pixel_values")
pixel_values = torch.stack(list(images))
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
pixel_values = pixel_values.to(vae.device, dtype=vae.dtype)
with torch.no_grad():
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
return {"model_input": accelerator.gather(model_input)}
class TorchPatcher:
@staticmethod
def new_get_preferred_device(self) -> torch.device:
"""
Return the preferred device to be used when creating tensors for collectives.
This method takes into account the asccociated process group
This patch method makes the torch npu available for distribution
"""
if dist.get_backend(self._process_group) == dist.Backend.NCCL:
return torch.device(torch.cuda.current_device())
try:
import torch_npu
return torch.device(torch_npu.npu.current_device())
except Exception as e:
return torch.device("cpu")
@classmethod
def apply_patch(cls):
# Apply the patch for npu distribution
ShardedTensor._get_preferred_device = cls.new_get_preferred_device
def config_gc():
# set gc threshold
gc.set_threshold(700, 50, 1000)
# Save Lora weights for checkpointing steps
def save_Lora_Weights(
unwrap_model,
unet,
text_encoder_one,
text_encoder_two,
train_text_encoder,
output_dir,
):
unet = unwrap_model(unet)
unet_lora_state_dict = convert_state_dict_to_diffusers(
get_peft_model_state_dict(unet)
)
if train_text_encoder:
text_encoder_one = unwrap_model(text_encoder_one)
text_encoder_two = unwrap_model(text_encoder_two)
text_encoder_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_one)
)
text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_two)
)
else:
text_encoder_lora_layers = None
text_encoder_2_lora_layers = None
StableDiffusionXLPipeline.save_lora_weights(
output_dir,
unet_lora_layers=unet_lora_state_dict,
text_encoder_lora_layers=text_encoder_lora_layers,
text_encoder_2_lora_layers=text_encoder_2_lora_layers,
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。